Question:

If \( \vec{i} - 2\vec{j} + 3\vec{k}, 2\vec{i} + 3\vec{j} - \vec{k}, -3\vec{i} - \vec{j} - 2\vec{k} \) are the position vectors of three points A, B, C respectively, then A, B, C:

Show Hint

To check whether three points are collinear or form a specific type of triangle, use the distance formula and vector operations like cross product to verify the conditions.
Updated On: May 18, 2025
  • are collinear points
  • form an isosceles triangle which is not equilateral
  • form an equilateral triangle
  • form a scalene triangle
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Approach Solution - 1

We are given the position vectors of points \( A, B, C \): \[ \vec{A} = \hat{i} - 2\hat{j} + 3\hat{k}, \quad \vec{B} = 2\hat{i} + 3\hat{j} - \hat{k}, \quad \vec{C} = -3\hat{i} - \hat{j} - 2\hat{k}. \] To determine the type of triangle formed by points A, B, and C, we calculate the distances \( AB \), \( BC \), and \( CA \) using the distance formula between two points in 3D space: \[ AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}. \] After computing the distances, we find that all the distances are equal, thus forming an equilateral triangle. Thus, the correct answer is that A, B, and C form an equilateral triangle.
Was this answer helpful?
0
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Given points:
\[ \vec{A} = \vec{i} - 2\vec{j} + 3\vec{k}, \quad \vec{B} = 2\vec{i} + 3\vec{j} - \vec{k}, \quad \vec{C} = -3\vec{i} - \vec{j} - 2\vec{k} \] Check if A, B, and C form an equilateral triangle.

Step 1: Calculate the vectors representing sides:
\[ \vec{AB} = \vec{B} - \vec{A} = (2 - 1)\vec{i} + (3 - (-2))\vec{j} + (-1 - 3)\vec{k} = \vec{i} + 5\vec{j} - 4\vec{k} \] \[ \vec{BC} = \vec{C} - \vec{B} = (-3 - 2)\vec{i} + (-1 - 3)\vec{j} + (-2 - (-1))\vec{k} = -5\vec{i} - 4\vec{j} - \vec{k} \] \[ \vec{CA} = \vec{A} - \vec{C} = (1 - (-3))\vec{i} + (-2 - (-1))\vec{j} + (3 - (-2))\vec{k} = 4\vec{i} - \vec{j} + 5\vec{k} \]

Step 2: Calculate the lengths of each side:
\[ |\vec{AB}| = \sqrt{1^2 + 5^2 + (-4)^2} = \sqrt{1 + 25 + 16} = \sqrt{42} \] \[ |\vec{BC}| = \sqrt{(-5)^2 + (-4)^2 + (-1)^2} = \sqrt{25 + 16 + 1} = \sqrt{42} \] \[ |\vec{CA}| = \sqrt{4^2 + (-1)^2 + 5^2} = \sqrt{16 + 1 + 25} = \sqrt{42} \]

Step 3: Since all three sides have equal length \( \sqrt{42} \), the triangle formed by points A, B, and C is equilateral.

Therefore,
\[ \boxed{\text{A, B, C form an equilateral triangle}} \]
Was this answer helpful?
0
0

Top Questions on Geometry and Vectors

View More Questions