Step 1: Understanding the Concept:
This question tests knowledge of standard vector calculus identities involving the operators gradient (\(\nabla\)), divergence (\(\nabla \cdot\)), and curl (\(\nabla \times\)).
Step 2: Detailed Explanation:
Let's analyze each identity in List-I.
A. div(grad \(\phi\)): This translates to \( \nabla \cdot (\nabla \phi) \), which is the definition of the Laplacian operator applied to \(\phi\), written as \( \nabla^2 \phi \). Option IV, \( \nabla \cdot \nabla \phi \), is the direct expression for this.
Match: A - IV
B. curl(grad \(\phi\)): This translates to \( \nabla \times (\nabla \phi) \). This is a fundamental vector identity which is always equal to the zero vector, \( \vec{0} \).
Match: B - III
C. \( \vec{F} \times \text{curl } \vec{F} \): This translates to \( \vec{F} \times (\nabla \times \vec{F}) \). This is a standard vector identity which expands to \( \frac{1}{2}\nabla(\vec{F} \cdot \vec{F}) - (\vec{F} \cdot \nabla)\vec{F} \). Note that \( \vec{F} \cdot \vec{F} = |\vec{F}|^2 = F^2 \). This matches the expression in option I.
Match: C - I
D. curl(curl \( \vec{F} \)): This translates to \( \nabla \times (\nabla \times \vec{F}) \). This is the "vector triple product" identity for nabla, which expands to \( \nabla(\nabla \cdot \vec{F}) - (\nabla \cdot \nabla)\vec{F} \). In words, this is grad(div \( \vec{F} \)) - (Laplacian of \( \vec{F} \)). This matches the expression in option II.
Match: D - II
Step 3: Final Answer:
Combining the matches gives A-IV, B-III, C-I, D-II. This corresponds to option (D).