Given:
\[
2\vec{a} + 3\vec{b} + 5\vec{c} - 10\vec{d} = 0
\]
Find the ratio in which point \( \vec{c} \) divides the line segment joining \( \vec{a} \) and \( \vec{b} \).
Step 1: Rearrange the equation:
\[
5 \vec{c} = 10 \vec{d} - 2 \vec{a} - 3 \vec{b}
\]
\[
\vec{c} = 2 \vec{d} - \frac{2}{5} \vec{a} - \frac{3}{5} \vec{b}
\]
Step 2: Assume \( \vec{c} \) divides the line segment \( \vec{a} \vec{b} \) in ratio \( m:n \), so:
\[
\vec{c} = \frac{m \vec{b} + n \vec{a}}{m + n}
\]
We want to find \( m:n \).
Step 3: Compare with the expression for \( \vec{c} \) in Step 1 ignoring \( \vec{d} \) (since \( \vec{c} \) lies on the line \( \vec{a}\vec{b} \), \( \vec{d} \) must be related accordingly or its contribution zero).
Step 4: Equate coefficients:
\[
\frac{m}{m + n} = -\frac{3}{5}, \quad \frac{n}{m + n} = -\frac{2}{5}
\]
Since ratios must be positive, multiply numerator and denominator by -1:
\[
\frac{m}{m + n} = \frac{3}{5}, \quad \frac{n}{m + n} = \frac{2}{5}
\]
So:
\[
\frac{m}{m + n} : \frac{n}{m + n} = \frac{3}{5} : \frac{2}{5} = 3 : 2
\]
Therefore,
\[
\boxed{3 : 2}
\]