We use the property \( |\vec{x}|^2 = \vec{x} \cdot \vec{x} \).
$$ |\vec{a}-\vec{b}|^2 = (\vec{a}-\vec{b}) \cdot (\vec{a}-\vec{b}) = \vec{a}\cdot\vec{a} - 2\vec{a}\cdot\vec{b} + \vec{b}\cdot\vec{b} $$
Since \(\vec{a}, \vec{b}, \vec{c}\) are unit vectors, \(|\vec{a}|=|\vec{b}|=|\vec{c}|=1\), and \(\vec{a}\cdot\vec{a} = |\vec{a}|^2 = 1\), etc.
$$ |\vec{a}-\vec{b}|^2 = 1 - 2\vec{a}\cdot\vec{b} + 1 = 2 - 2\vec{a}\cdot\vec{b} $$
Similarly,
$$ |\vec{b}-\vec{c}|^2 = 2 - 2\vec{b}\cdot\vec{c} $$
$$ |\vec{c}-\vec{a}|^2 = 2 - 2\vec{c}\cdot\vec{a} $$
Summing these three expressions:
$$ S = |\vec{a}-\vec{b}|^2 + |\vec{b}-\vec{c}|^2 + |\vec{c}-\vec{a}|^2 = (2 - 2\vec{a}\cdot\vec{b}) + (2 - 2\vec{b}\cdot\vec{c}) + (2 - 2\vec{c}\cdot\vec{a}) $$
$$ S = 6 - 2(\vec{a}\cdot\vec{b} + \vec{b}\cdot\vec{c} + \vec{c}\cdot\vec{a}) $$
Now consider the magnitude squared of the sum of the vectors:
$$ |\vec{a}+\vec{b}+\vec{c}|^2 = (\vec{a}+\vec{b}+\vec{c}) \cdot (\vec{a}+\vec{b}+\vec{c}) $$
$$ = |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a}\cdot\vec{b} + \vec{b}\cdot\vec{c} + \vec{c}\cdot\vec{a}) $$
$$ |\vec{a}+\vec{b}+\vec{c}|^2 = 1 + 1 + 1 + 2(\vec{a}\cdot\vec{b} + \vec{b}\cdot\vec{c} + \vec{c}\cdot\vec{a}) $$
$$ |\vec{a}+\vec{b}+\vec{c}|^2 = 3 + 2(\vec{a}\cdot\vec{b} + \vec{b}\cdot\vec{c} + \vec{c}\cdot\vec{a}) $$
Since the square of a magnitude must be non-negative:
$$ |\vec{a}+\vec{b}+\vec{c}|^2 \ge 0 $$
$$ 3 + 2(\vec{a}\cdot\vec{b} + \vec{b}\cdot\vec{c} + \vec{c}\cdot\vec{a}) \ge 0 $$
$$ 2(\vec{a}\cdot\vec{b} + \vec{b}\cdot\vec{c} + \vec{c}\cdot\vec{a}) \ge -3 $$
Now substitute this back into the expression for S:
$$ S = 6 - [2(\vec{a}\cdot\vec{b} + \vec{b}\cdot\vec{c} + \vec{c}\cdot\vec{a})] $$
Since \(2(\vec{a}\cdot\vec{b} + \vec{b}\cdot\vec{c} + \vec{c}\cdot\vec{a}) \ge -3\), then \(-[2(\vec{a}\cdot\vec{b} + \vec{b}\cdot\vec{c} + \vec{c}\cdot\vec{a})] \le 3\).
Therefore,
$$ S \le 6 + 3 = 9 $$
The sum does not exceed 9.