>
Exams
>
Engineering Mathematics
>
Vector Calculus
>
if vec a vec b vec c are unit vectors then vec a
Question:
If \( \vec{a}, \vec{b}, \vec{c} \) are unit vectors, then \( |\vec{a}-\vec{b}|^2 + |\vec{b}-\vec{c}|^2 + |\vec{c}-\vec{a}|^2 \) does not exceed
Show Hint
Vector Identities. Use \(|\vec{x-\vec{y|^2 = |\vec{x|^2 + |\vec{y|^2 - 2\vec{x\cdot\vec{y\) and \(|\vec{x+\vec{y+\vec{z|^2 = |\vec{x|^2 + |\vec{y|^2 + |\vec{z|^2 + 2(\vec{x\cdot\vec{y + \vec{y\cdot\vec{z + \vec{z\cdot\vec{x) \ge 0\). For unit vectors, \(|\vec{x|=1\).
AP PGECET - 2024
AP PGECET
Updated On:
May 7, 2025
4
9
8
6
Hide Solution
Verified By Collegedunia
The Correct Option is
B
Solution and Explanation
We use the property \( |\vec{x}|^2 = \vec{x} \cdot \vec{x} \).
$$ |\vec{a}-\vec{b}|^2 = (\vec{a}-\vec{b}) \cdot (\vec{a}-\vec{b}) = \vec{a}\cdot\vec{a} - 2\vec{a}\cdot\vec{b} + \vec{b}\cdot\vec{b} $$ Since \(\vec{a}, \vec{b}, \vec{c}\) are unit vectors, \(|\vec{a}|=|\vec{b}|=|\vec{c}|=1\), and \(\vec{a}\cdot\vec{a} = |\vec{a}|^2 = 1\), etc.
$$ |\vec{a}-\vec{b}|^2 = 1 - 2\vec{a}\cdot\vec{b} + 1 = 2 - 2\vec{a}\cdot\vec{b} $$ Similarly, $$ |\vec{b}-\vec{c}|^2 = 2 - 2\vec{b}\cdot\vec{c} $$ $$ |\vec{c}-\vec{a}|^2 = 2 - 2\vec{c}\cdot\vec{a} $$ Summing these three expressions: $$ S = |\vec{a}-\vec{b}|^2 + |\vec{b}-\vec{c}|^2 + |\vec{c}-\vec{a}|^2 = (2 - 2\vec{a}\cdot\vec{b}) + (2 - 2\vec{b}\cdot\vec{c}) + (2 - 2\vec{c}\cdot\vec{a}) $$ $$ S = 6 - 2(\vec{a}\cdot\vec{b} + \vec{b}\cdot\vec{c} + \vec{c}\cdot\vec{a}) $$ Now consider the magnitude squared of the sum of the vectors: $$ |\vec{a}+\vec{b}+\vec{c}|^2 = (\vec{a}+\vec{b}+\vec{c}) \cdot (\vec{a}+\vec{b}+\vec{c}) $$ $$ = |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a}\cdot\vec{b} + \vec{b}\cdot\vec{c} + \vec{c}\cdot\vec{a}) $$ $$ |\vec{a}+\vec{b}+\vec{c}|^2 = 1 + 1 + 1 + 2(\vec{a}\cdot\vec{b} + \vec{b}\cdot\vec{c} + \vec{c}\cdot\vec{a}) $$ $$ |\vec{a}+\vec{b}+\vec{c}|^2 = 3 + 2(\vec{a}\cdot\vec{b} + \vec{b}\cdot\vec{c} + \vec{c}\cdot\vec{a}) $$ Since the square of a magnitude must be non-negative: $$ |\vec{a}+\vec{b}+\vec{c}|^2 \ge 0 $$ $$ 3 + 2(\vec{a}\cdot\vec{b} + \vec{b}\cdot\vec{c} + \vec{c}\cdot\vec{a}) \ge 0 $$ $$ 2(\vec{a}\cdot\vec{b} + \vec{b}\cdot\vec{c} + \vec{c}\cdot\vec{a}) \ge -3 $$ Now substitute this back into the expression for S: $$ S = 6 - [2(\vec{a}\cdot\vec{b} + \vec{b}\cdot\vec{c} + \vec{c}\cdot\vec{a})] $$ Since \(2(\vec{a}\cdot\vec{b} + \vec{b}\cdot\vec{c} + \vec{c}\cdot\vec{a}) \ge -3\), then \(-[2(\vec{a}\cdot\vec{b} + \vec{b}\cdot\vec{c} + \vec{c}\cdot\vec{a})] \le 3\).
Therefore, $$ S \le 6 + 3 = 9 $$ The sum does not exceed 9.
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Vector Calculus
The torque due to the force \( \left( 2\hat{i} + \hat{j} + 2\hat{k} \right) \) about the origin, acting on a particle whose position vector is \( \hat{i} + \hat{j} + \hat{k} \), would be:
JEE Main - 2025
Physics
Vector Calculus
View Solution
Let \( \vec{F} \) be the vector valued function and f be a scalar function. Let \( \nabla = \hat{i}\frac{\partial}{\partial x} + \hat{j}\frac{\partial}{\partial y} + \hat{k}\frac{\partial}{\partial z} \) then,
(A) div (grad f) = \( \nabla^2 f \)
(B) curl curl \( \vec{F} \) = grad curl \( \vec{F} \) - \( \nabla^2 \vec{F} \)
(C) div curl \( \vec{F} \) = \( \vec{0} \)
(D) curl grad f = \( \vec{0} \)
(E) div (\(f\vec{F}\)) = f div \( \vec{F} \) + (grad f) \( \times \vec{F} \)
Choose the correct answer from the options given below:
CUET (PG) - 2025
Mathematics
Vector Calculus
View Solution
The value of \( \oint_S \vec{F} \cdot d\vec{s} \) where \( \vec{F} = 4x\hat{i} - 2y^2\hat{j} + z^2\hat{k} \) taken over the cylinder \( x^2+y^2=4, z=0 \) and \( z=3 \) is:
CUET (PG) - 2025
Mathematics
Vector Calculus
View Solution
The directional derivative of \( \nabla \cdot (\nabla f) \) at the point (1, -2, 1) in the direction of the normal to the surface \( xy^2z = 3x + z^2 \) where \( f = 2x^3y^2z^4 \) and \( \nabla = \hat{i}\frac{\partial}{\partial x} + \hat{j}\frac{\partial}{\partial y} + \hat{k}\frac{\partial}{\partial z} \) is
CUET (PG) - 2025
Mathematics
Vector Calculus
View Solution
If R is a closed region in the xy-plane bounded by a simple closed curve C and if M(x, y) and N(x, y) are continuous functions of x and y having continuous derivative in R, then
CUET (PG) - 2025
Mathematics
Vector Calculus
View Solution
View More Questions
Questions Asked in AP PGECET exam
A number is selected randomly from each of the following two sets:
{1, 2, 3, 4, 5, 6, 7, 8}, {2, 3, 4, 5, 6, 7, 8, 9}
What is the probability that the sum of the numbers is 9?
AP PGECET - 2025
Probability and Statistics
View Solution
The ratio of the ages of A and B is 5:3. After 6 years, their ages will be in the ratio 6:4. What is the current age of A?
AP PGECET - 2025
Ratio and Proportion
View Solution
________ function is performed by data input/capture subsystem of GIS.
AP PGECET - 2025
Geographic Information System - GIS
View Solution
Consider the system of equations:
\[ x + 2y - z = 3 \\ 2x + 4y - 2z = 7 \\ 3x + 6y - 3z = 9 \]
Which of the following statements is true about the system?
AP PGECET - 2025
Linear Algebra
View Solution
The multiple access method used in Global Positioning Systems is ________.
AP PGECET - 2025
Digital Electronics and Logic Gates
View Solution
View More Questions