We are given the following conditions:
\[
|\vec{a}| = 5, \quad |\vec{b}| = 8, \quad |\vec{c}| = 11, \quad \vec{a} + \vec{b} + \vec{c} = 0.
\]
Using the property \( \vec{a} + \vec{b} + \vec{c} = 0 \), we can write \( \vec{c} = -(\vec{a} + \vec{b}) \).
Now, to find the angle \( \theta \) between \( \vec{a} \) and \( \vec{b} \), we use the formula for the dot product:
\[
\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta.
\]
Substitute the known values and solve for \( \cos \theta \), we find that:
\[
\cos \theta = \frac{-2}{5}.
\]
Thus, the correct answer is \( \cos^{-1}\left( \frac{-2}{5} \right) \).