We are given that \( \vec{a} = \hat{i} - \hat{j} + \hat{k} \), \( \vec{b} = 2\hat{i} + \hat{j} + \hat{k} \), and \( \vec{c} \) is a unit vector lying in the plane of \( \vec{a} \) and \( \vec{b} \), and that \( \vec{c} \) is perpendicular to \( \vec{b} \).
Step 1: Since \( \vec{c} \) is in the plane of \( \vec{a} \) and \( \vec{b} \), we can express \( \vec{c} \) as a linear combination of \( \vec{a} \) and \( \vec{b} \): \[ \vec{c} = \lambda \vec{a} + \mu \vec{b} \] where \( \lambda \) and \( \mu \) are constants to be determined.
Step 2: Given that \( \vec{c} \) is perpendicular to \( \vec{b} \), we have the condition: \[ \vec{c} \cdot \vec{b} = 0 \] Substituting \( \vec{c} = \lambda \vec{a} + \mu \vec{b} \) into this equation: \[ (\lambda \vec{a} + \mu \vec{b}) \cdot \vec{b} = 0 \] \[ \lambda (\vec{a} \cdot \vec{b}) + \mu (\vec{b} \cdot \vec{b}) = 0 \] Now calculate \( \vec{a} \cdot \vec{b} \) and \( \vec{b} \cdot \vec{b} \): \[ \vec{a} \cdot \vec{b} = (1)(2) + (-1)(1) + (1)(1) = 2 - 1 + 1 = 2 \] \[ \vec{b} \cdot \vec{b} = (2)^2 + (1)^2 + (1)^2 = 4 + 1 + 1 = 6 \] Thus, the equation becomes: \[ \lambda(2) + \mu(6) = 0 \] \[ 2\lambda + 6\mu = 0 \quad \Rightarrow \quad \lambda = -3\mu \]
Step 3: Since \( \vec{c} \) is a unit vector, we also have the condition: \[ |\vec{c}| = 1 \] Thus, the magnitude of \( \vec{c} \) is: \[ |\vec{c}|^2 = (\lambda \vec{a} + \mu \vec{b}) \cdot (\lambda \vec{a} + \mu \vec{b}) \] Expanding this: \[ |\vec{c}|^2 = \lambda^2 (\vec{a} \cdot \vec{a}) + 2\lambda \mu (\vec{a} \cdot \vec{b}) + \mu^2 (\vec{b} \cdot \vec{b}) \] We already know \( \vec{a} \cdot \vec{a} = 3 \) and \( \vec{b} \cdot \vec{b} = 6 \), and from above, \( \vec{a} \cdot \vec{b} = 2 \), so: \[ |\vec{c}|^2 = \lambda^2 (3) + 2\lambda \mu (2) + \mu^2 (6) \] Substitute \( \lambda = -3\mu \) into this equation: \[ |\vec{c}|^2 = (-3\mu)^2 (3) + 2(-3\mu)(\mu)(2) + \mu^2 (6) \] \[ |\vec{c}|^2 = 27\mu^2 - 12\mu^2 + 6\mu^2 = 21\mu^2 \] Since \( |\vec{c}|^2 = 1 \), we get: \[ 21\mu^2 = 1 \quad \Rightarrow \quad \mu^2 = \frac{1}{21} \quad \Rightarrow \quad \mu = \frac{1}{\sqrt{21}} \] Thus, \( \lambda = -3\mu = -\frac{3}{\sqrt{21}} \).
Step 4: Finally, we need to find \( \vec{c} \cdot (\hat{i} + 2\hat{k}) \): \[ \vec{c} = \lambda \vec{a} + \mu \vec{b} = -\frac{3}{\sqrt{21}} \vec{a} + \frac{1}{\sqrt{21}} \vec{b} \] \[ \vec{c} \cdot (\hat{i} + 2\hat{k}) = -\frac{3}{\sqrt{21}} (\vec{a} \cdot (\hat{i} + 2\hat{k})) + \frac{1}{\sqrt{21}} (\vec{b} \cdot (\hat{i} + 2\hat{k})) \] We compute the dot products: \[ \vec{a} \cdot (\hat{i} + 2\hat{k}) = 1(1) + (-1)(0) + 1(2) = 1 + 2 = 3 \] \[ \vec{b} \cdot (\hat{i} + 2\hat{k}) = 2(1) + 1(0) + 1(2) = 2 + 2 = 4 \] Thus: \[ \vec{c} \cdot (\hat{i} + 2\hat{k}) = -\frac{3}{\sqrt{21}}(3) + \frac{1}{\sqrt{21}}(4) = \frac{-9}{\sqrt{21}} + \frac{4}{\sqrt{21}} = \frac{-5}{\sqrt{21}} \] Thus, the value of \( \vec{c} \cdot (\hat{i} + 2\hat{k}) \) is \( \frac{1}{\sqrt{21}} \).
Arrange the following in increasing order of their pK\(_b\) values.
What is Z in the following set of reactions?
Acetophenone can be prepared from which of the following reactants?
What are \(X\) and \(Y\) in the following reactions?
What are \(X\) and \(Y\) respectively in the following reaction?