>
Exams
>
Mathematics
>
Vector Algebra
>
if vec a hat i 5 hat k vec b 2 hat i 3 hat k vec c
Question:
If \( \vec{a} = \hat{i} + 5\hat{k}, \, \vec{b} = 2\hat{i} + 3\hat{k}, \, \vec{c} = 4\hat{i} - \hat{j} + 2\hat{k}, \, \vec{d} = \hat{i} - \hat{j} \), then \( (\vec{c} - \vec{a}) \cdot (\vec{b} \times \vec{d}) = \)
Show Hint
When calculating the dot and cross product, ensure to follow the determinant method for the cross product and apply the distributive property for the dot product.
MHT CET - 2020
MHT CET
Updated On:
Jan 26, 2026
12
20
30
10
Hide Solution
Verified By Collegedunia
The Correct Option is
A
Solution and Explanation
Step 1: Calculate the vector \( \vec{c} - \vec{a} \).
\[ \vec{c} - \vec{a} = (4\hat{i} - \hat{j} + 2\hat{k}) - (\hat{i} + 5\hat{k}) = 3\hat{i} - \hat{j} - 3\hat{k} \]
Step 2: Calculate the cross product \( \vec{b} \times \vec{d} \).
\[ \vec{b} \times \vec{d} = \left| \begin{matrix} \hat{i} & \hat{j} & \hat{k} \\ 2\hat{i} + 3\hat{k} & \hat{i} - \hat{j} \end{matrix} \right| = \hat{i} + 5\hat{j} - 3\hat{k} \]
Step 3: Calculate the dot product.
Now calculate the dot product: \[ (\vec{c} - \vec{a}) \cdot (\vec{b} \times \vec{d}) = (3\hat{i} - \hat{j} - 3\hat{k}) \cdot (\hat{i} + 5\hat{j} - 3\hat{k}) = 12 \]
Step 4: Conclusion.
The correct answer is
(A) 12
.
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Vector Algebra
Let \(\overrightarrow{AB}=3\hat{i}+\hat{j}-\hat{k}\) and \(\overrightarrow{AC}=\hat{i}-\hat{j}+3\hat{k}\). If \(P\) is the point on the bisector of angle between \(\overrightarrow{AB}\) and \(\overrightarrow{AC}\) such that \(|\overrightarrow{AP}|=\dfrac{\sqrt{5}}{2}\), then the area of \(\triangle APB\) is:
JEE Main - 2026
Mathematics
Vector Algebra
View Solution
If $2(\vec a \times \vec c)+3(\vec b \times \vec c)=0$, where $\vec a=2\hat i-5\hat j+5\hat k$, $\vec b=\hat i-\hat j+3\hat k$ and $(\vec a-\vec b)\cdot\vec c=-97$, find $|\vec c \times \vec k|^2$.
JEE Main - 2026
Mathematics
Vector Algebra
View Solution
For given vectors \( \mathbf{a} = -\hat{i} + \hat{j} + 2\hat{k} \) and \( \mathbf{b} = 2\hat{i} - \hat{j} + \hat{k} \), where \( \mathbf{c} = \mathbf{a} \times \mathbf{b} \) and \( \mathbf{d} = \mathbf{c} \times \mathbf{b} \), then the value of \( (\mathbf{a} - \mathbf{b}) \cdot \mathbf{d} \) is:
JEE Main - 2026
Mathematics
Vector Algebra
View Solution
For given vectors \( \vec{a} = -\hat{i} + \hat{j} + 2\hat{k} \) and \( \vec{b} = 2\hat{i} - \hat{j} + \hat{k} \) where \( \vec{c} = \vec{a} \times \vec{b} \) and \( \vec{d} = \vec{c} \times \vec{b} \). Then the value of \( (\vec{a}-\vec{b}) \cdot \vec{d} \) is:
JEE Main - 2026
Mathematics
Vector Algebra
View Solution
If three vectors are given as shown. If the angle between vectors \( \mathbf{p} \) and \( \mathbf{q} \) is \( \theta \) where \( \cos \theta = \frac{1}{\sqrt{3}} \), \( |\mathbf{p}| = 2 \), and \( |\mathbf{q}| = 2 \), then the value of \( |\mathbf{p} \times (\mathbf{q} - 3\mathbf{r})|^2 - 3|\mathbf{r}|^2 \) is:
JEE Main - 2026
Mathematics
Vector Algebra
View Solution
View More Questions
Questions Asked in MHT CET exam
If $ f(x) = 2x^2 - 3x + 5 $, find $ f(3) $.
MHT CET - 2025
Functions
View Solution
Evaluate the definite integral: \( \int_{-2}^{2} |x^2 - x - 2| \, dx \)
MHT CET - 2025
Definite Integral
View Solution
There are 6 boys and 4 girls. Arrange their seating arrangement on a round table such that 2 boys and 1 girl can't sit together.
MHT CET - 2025
permutations and combinations
View Solution
Given the equation: \[ 81 \sin^2 x + 81 \cos^2 x = 30 \] Find the value of \( x \)
.
MHT CET - 2025
Trigonometric Identities
View Solution
Evaluate the integral: \[ \int \frac{1}{\sin^2 2x \cdot \cos^2 2x} \, dx \]
MHT CET - 2025
Trigonometric Identities
View Solution
View More Questions