To find a unit vector perpendicular to the vectors \( \bar{a} = 2\bar{i} + 3\bar{j} + 4\bar{k} \) and \( \bar{b} = 3\bar{j} + 2
bar{k} \), we proceed as follows: Step 1: Compute the cross product \( \bar{a} \times \bar{b} \) The cross product of \( \bar{a} \) and \( \bar{b} \) is:
Expand the determinant: \[ \bar{a} \times \bar{b} = \bar{i} (3 \cdot 2 - 4 \cdot 3) - \bar{j} (2 \cdot 2 - 4 \cdot 0) + \bar{k} (2 \cdot 3 - 3 \cdot 0). \] Simplify: \[ \bar{a} \times \bar{b} = \bar{i} (6 - 12) - \bar{j} (4 - 0) + \bar{k} (6 - 0) = -6\bar{i} - 4\bar{j} + 6\bar{k}. \] Step 2: Normalize the cross product To find a unit vector perpendicular to \( \bar{a} \) and \( \bar{b} \), normalize \( \bar{a} \times \bar{b} \): \[ \mathbf{u} = \frac{\bar{a} \times \bar{b}}{|\bar{a} \times \bar{b}|}. \] First, compute the magnitude of \( \bar{a} \times \bar{b} \): \[ |\bar{a} \times \bar{b}| = \sqrt{(-6)^2 + (-4)^2 + 6^2} = \sqrt{36 + 16 + 36} = \sqrt{88} = 2\sqrt{22}. \] Thus, the unit vector is: \[ \mathbf{u} = \frac{-6\bar{i} - 4\bar{j} + 6\bar{k}}{2\sqrt{22}} = \frac{-3\bar{i} - 2\bar{j} + 3\bar{k}}{\sqrt{22}}. \] Step 3: Compare with the options The unit vector \( \mathbf{u} = \frac{-3\bar{i}- 2\bar{j} + 3\bar{k}}{\sqrt{22}} \) matches option (3): \[ \frac{3\bar{i} - 2\bar{j} + 3\bar{k}}{\sqrt{22}}. \] Final Answer: \[ \boxed{\frac{3\bar{i} - 2\bar{j} + 3\bar{k}}{\sqrt{22}}} \]
Arrange the following in increasing order of their pK\(_b\) values.
What is Z in the following set of reactions?
Acetophenone can be prepared from which of the following reactants?
What are \(X\) and \(Y\) in the following reactions?
What are \(X\) and \(Y\) respectively in the following reaction?