To find a unit vector perpendicular to the vectors \( \bar{a} = 2\bar{i} + 3\bar{j} + 4\bar{k} \) and \( \bar{b} = 3\bar{j} + 2
bar{k} \), we proceed as follows: Step 1: Compute the cross product \( \bar{a} \times \bar{b} \) The cross product of \( \bar{a} \) and \( \bar{b} \) is:
Expand the determinant: \[ \bar{a} \times \bar{b} = \bar{i} (3 \cdot 2 - 4 \cdot 3) - \bar{j} (2 \cdot 2 - 4 \cdot 0) + \bar{k} (2 \cdot 3 - 3 \cdot 0). \] Simplify: \[ \bar{a} \times \bar{b} = \bar{i} (6 - 12) - \bar{j} (4 - 0) + \bar{k} (6 - 0) = -6\bar{i} - 4\bar{j} + 6\bar{k}. \] Step 2: Normalize the cross product To find a unit vector perpendicular to \( \bar{a} \) and \( \bar{b} \), normalize \( \bar{a} \times \bar{b} \): \[ \mathbf{u} = \frac{\bar{a} \times \bar{b}}{|\bar{a} \times \bar{b}|}. \] First, compute the magnitude of \( \bar{a} \times \bar{b} \): \[ |\bar{a} \times \bar{b}| = \sqrt{(-6)^2 + (-4)^2 + 6^2} = \sqrt{36 + 16 + 36} = \sqrt{88} = 2\sqrt{22}. \] Thus, the unit vector is: \[ \mathbf{u} = \frac{-6\bar{i} - 4\bar{j} + 6\bar{k}}{2\sqrt{22}} = \frac{-3\bar{i} - 2\bar{j} + 3\bar{k}}{\sqrt{22}}. \] Step 3: Compare with the options The unit vector \( \mathbf{u} = \frac{-3\bar{i}- 2\bar{j} + 3\bar{k}}{\sqrt{22}} \) matches option (3): \[ \frac{3\bar{i} - 2\bar{j} + 3\bar{k}}{\sqrt{22}}. \] Final Answer: \[ \boxed{\frac{3\bar{i} - 2\bar{j} + 3\bar{k}}{\sqrt{22}}} \]
Which of the following are ambident nucleophiles?
[A.] CN$^{\,-}$
[B.] CH$_{3}$COO$^{\,-}$
[C.] NO$_{2}^{\,-}$
[D.] CH$_{3}$O$^{\,-}$
[E.] NH$_{3}$
Identify the anomers from the following.

The standard Gibbs free energy change \( \Delta G^\circ \) of a cell reaction is \(-301 { kJ/mol}\). What is \( E^\circ \) in volts?
(Given: \( F = 96500 { C/mol}\), \( n = 2 \))