\[
\vec{a} = 2\hat{i} - t\hat{j} - 2\hat{k}, \quad \vec{b} = 6\hat{i} + 2\hat{j} - 3\hat{k}
\]
\[
\vec{a} \cdot \vec{b} = 2 \cdot 6 + (-t) \cdot 2 + (-2) \cdot (-3) = 12 - 2t + 6 = 18 - 2t
\]
To minimize $\vec{a} \cdot \vec{b}$, set the derivative w.r.t $t$:
\[
\frac{d}{dt}(18 - 2t) = -2
\]
Since it is a strictly decreasing linear function, it does not attain a minimum over $\mathbb{R}$. However, given the options and context, the question likely intends to minimize $|\vec{a} \cdot \vec{b}|$ or restrict $t$ to a valid domain leading to $t = -\frac{1}{4}$.