Step 1: Find the dot product of \( \vec{a} \) and \( \vec{b} \)
The dot product of \( \vec{a} \) and \( \vec{b} \) is: \[ \vec{a} \cdot \vec{b} = (2)(1) + (-1)(1) + (1)(-1) = 2 - 1 - 1 = 0. \]
Step 2: Check for perpendicularity
If \( \vec{a} \cdot \vec{b} = 0 \), the vectors are perpendicular.
Step 3: Conclude the result
The vectors \( \vec{a} \) and \( \vec{b} \) are perpendicular.
Match the LIST-I with LIST-II
LIST-I (Expressions) | LIST-II (Values) | ||
---|---|---|---|
A. | \( i^{49} \) | I. | 1 |
B. | \( i^{38} \) | II. | \(-i\) |
C. | \( i^{103} \) | III. | \(i\) |
D. | \( i^{92} \) | IV. | \(-1\) |
Choose the correct answer from the options given below: