Step 1: Find the dot product of \( \vec{a} \) and \( \vec{b} \)
The dot product of \( \vec{a} \) and \( \vec{b} \) is: \[ \vec{a} \cdot \vec{b} = (2)(1) + (-1)(1) + (1)(-1) = 2 - 1 - 1 = 0. \]
Step 2: Check for perpendicularity
If \( \vec{a} \cdot \vec{b} = 0 \), the vectors are perpendicular.
Step 3: Conclude the result
The vectors \( \vec{a} \) and \( \vec{b} \) are perpendicular.
The respective values of \( |\vec{a}| \) and} \( |\vec{b}| \), if given \[ (\vec{a} - \vec{b}) \cdot (\vec{a} + \vec{b}) = 512 \quad \text{and} \quad |\vec{a}| = 3 |\vec{b}|, \] are: