>
Exams
>
Mathematics
>
Vector Algebra
>
if vec a 2 hat i hat j 3 hat k vec b 3 hat i 5 hat
Question:
If $\vec{a} = 2\hat{i} - \hat{j} + 3\hat{k}$, $\vec{b} = -3\hat{i} + 5\hat{j} - 4\hat{k}$, $\vec{c} = 6\hat{i} - 4\hat{j} + 5\hat{k}$, then $(\vec{a} \times \vec{b}) \cdot (\vec{b} \times \vec{c}) = $
Show Hint
Vector Quadruple Product. Use Lagrange identity for scalar triple products to simplify vector expressions efficiently.
AP EAPCET - 2023
AP EAPCET
Updated On:
May 20, 2025
$-216$
$243$
$81$
$-27$
Hide Solution
Verified By Collegedunia
The Correct Option is
A
Approach Solution - 1
Use Lagrange identity: \[ (\vec{a} \times \vec{b}) \cdot (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{b})(\vec{b} \cdot \vec{c}) - (\vec{a} \cdot \vec{c})(\vec{b} \cdot \vec{b}) \] \[ \vec{a} \cdot \vec{b} = -23,\quad \vec{b} \cdot \vec{c} = -58,\quad \vec{a} \cdot \vec{c} = 31,\quad \vec{b} \cdot \vec{b} = 50 \] \[ (-23)(-58) - (31)(50) = 1334 - 1550 = -216 \]
Download Solution in PDF
Was this answer helpful?
0
0
Hide Solution
Verified By Collegedunia
Approach Solution -2
Step 1: Understand the problem
We are given three vectors:
\[ \vec{a} = 2\hat{i} - \hat{j} + 3\hat{k}, \quad \vec{b} = -3\hat{i} + 5\hat{j} - 4\hat{k}, \quad \vec{c} = 6\hat{i} - 4\hat{j} + 5\hat{k} \]
We need to find \((\vec{a} \times \vec{b}) \cdot (\vec{b} \times \vec{c})\).
Step 2: Use the vector identity
Recall the identity:
\[ (\vec{a} \times \vec{b}) \cdot (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{b})(\vec{b} \cdot \vec{c}) - (\vec{a} \cdot \vec{c})(\vec{b} \cdot \vec{b}) \]
Step 3: Calculate dot products
\[ \vec{a} \cdot \vec{b} = (2)(-3) + (-1)(5) + (3)(-4) = -6 -5 -12 = -23 \]
\[ \vec{b} \cdot \vec{c} = (-3)(6) + (5)(-4) + (-4)(5) = -18 -20 -20 = -58 \]
\[ \vec{a} \cdot \vec{c} = (2)(6) + (-1)(-4) + (3)(5) = 12 + 4 + 15 = 31 \]
\[ \vec{b} \cdot \vec{b} = (-3)^2 + 5^2 + (-4)^2 = 9 + 25 + 16 = 50 \]
Step 4: Substitute values in identity
\[ (\vec{a} \times \vec{b}) \cdot (\vec{b} \times \vec{c}) = (-23)(-58) - (31)(50) = 1334 - 1550 = -216 \]
Final answer:
\(-216\)
Was this answer helpful?
0
0
Top Questions on Vector Algebra
What is the dot product of the vectors \( \mathbf{a} = (2, 3, 1) \) and \( \mathbf{b} = (1, -1, 4) \)?
BITSAT - 2025
Mathematics
Vector Algebra
View Solution
Find the shortest distance between the lines:
\[ \mathbf{r}_1 = (2\hat{i} - \hat{j} + 3\hat{k}) + \lambda (\hat{i} - 2\hat{j} + 3\hat{k}) \] \[ \mathbf{r}_2 = (\hat{i} + 4\hat{k}) + \mu (3\hat{i} - 6\hat{j} + 9\hat{k}) \]
CBSE CLASS XII - 2025
Mathematics
Vector Algebra
View Solution
Find the angle between the vectors \( \mathbf{a} = (2, 3, 1) \) and \( \mathbf{b} = (1, -1, 4) \).
BITSAT - 2025
Mathematics
Vector Algebra
View Solution
Find the angle between the vectors \( \mathbf{a} = (2, -1, 3) \) and \( \mathbf{b} = (1, 4, -2) \).
BITSAT - 2025
Mathematics
Vector Algebra
View Solution
The angle between vectors $ \mathbf{a} = \hat{i} + \hat{j} - 2\hat{k} $ and $ \mathbf{b} = 3\hat{i} - \hat{j} + 2\hat{k} $ is:
CUET (UG) - 2025
Mathematics
Vector Algebra
View Solution
View More Questions
Questions Asked in AP EAPCET exam
In a container of volume 16.62 m$^3$ at 0°C temperature, 2 moles of oxygen, 5 moles of nitrogen and 3 moles of hydrogen are present, then the pressure in the container is (Universal gas constant = 8.31 J/mol K)
AP EAPCET - 2025
Ideal gas equation
View Solution
If
\[ A = \begin{bmatrix} x & 2 & 1 \\ -2 & y & 0 \\ 2 & 0 & -1 \end{bmatrix}, \] where \( x \) and \( y \) are non-zero real numbers, trace of \( A = 0 \), and determinant of \( A = -6 \), then the minor of the element 1 of \( A \) is:}
AP EAPCET - 2025
Complex numbers
View Solution
Two objects of masses 5 kg and 10 kg are placed 2 meters apart. What is the gravitational force between them?
(Use \(G = 6.67 \times 10^{-11}\, \mathrm{Nm^2/kg^2}\))
AP EAPCET - 2025
Gravitation
View Solution
The number of solutions of the equation $4 \cos 2\theta \cos 3\theta = \sec \theta$ in the interval $[0, 2\pi]$ is
AP EAPCET - 2025
Trigonometric Identities
View Solution
The area (in sq. units) of the triangle formed by the tangent and normal to the ellipse \( 9x^2 + 4y^2 = 72 \) at the point (2, 3) with the X-axis is
AP EAPCET - 2025
Coordinate Geometry
View Solution
View More Questions