Question:

If $\vec{a} = 2\hat{i} - \hat{j} + 3\hat{k}$, $\vec{b} = -3\hat{i} + 5\hat{j} - 4\hat{k}$, $\vec{c} = 6\hat{i} - 4\hat{j} + 5\hat{k}$, then $(\vec{a} \times \vec{b}) \cdot (\vec{b} \times \vec{c}) = $

Show Hint

Vector Quadruple Product. Use Lagrange identity for scalar triple products to simplify vector expressions efficiently.
Updated On: May 17, 2025
  • $-216$
  • $243$
  • $81$
  • $-27$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Use Lagrange identity: \[ (\vec{a} \times \vec{b}) \cdot (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{b})(\vec{b} \cdot \vec{c}) - (\vec{a} \cdot \vec{c})(\vec{b} \cdot \vec{b}) \] \[ \vec{a} \cdot \vec{b} = -23,\quad \vec{b} \cdot \vec{c} = -58,\quad \vec{a} \cdot \vec{c} = 31,\quad \vec{b} \cdot \vec{b} = 50 \] \[ (-23)(-58) - (31)(50) = 1334 - 1550 = -216 \]
Was this answer helpful?
0
0