If \( u = x^3 \) and \( v = y^2 \) transform the differential equation \( 3x^5 dx - y(y^2 - x^3) dy = 0 \) to \( \dfrac{dv}{du} = \dfrac{\alpha u}{2(u - v)} \), then \( \alpha \) is
Step 1: Find the Differentials
We have the transformation equations:
$$u = x^3 \implies du = \frac{d}{dx}(x^3) dx \implies du = 3x^2 dx$$
From this, we get an expression for $dx$:
$$dx = \frac{du}{3x^2}$$
$$v = y^2 \implies dv = \frac{d}{dy}(y^2) dy \implies dv = 2y dy$$
From this, we get an expression for $dy$:
$$dy = \frac{dv}{2y}$$
Step 2: Substitute into the Differential Equation
Substitute the expressions for $dx$, $dy$, $u$, and $v$ into the original differential equation:
$$3x^5 dx - y(y^2 - x^3) dy = 0$$
$$3x^5 \left( \frac{du}{3x^2} \right) - y(v - u) \left( \frac{dv}{2y} \right) = 0$$
Step 3: Simplify the Equation
Simplify the terms:
$$\left( \frac{3x^5}{3x^2} \right) du - \left( \frac{y}{2y} \right) (v - u) dv = 0$$
$$x^3 du - \frac{1}{2} (v - u) dv = 0$$
Now substitute $u = x^3$ back into the simplified equation:
$$u du - \frac{1}{2} (v - u) dv = 0$$
Multiply by 2 to clear the fraction:
$$2u du - (v - u) dv = 0$$
Rearrange the terms to isolate the $dv$ term:
$$(v - u) dv = 2u du$$
Step 4: Find the Ratio $\frac{dv}{du}$ and Determine $\alpha$
Divide by $(v - u) du$ to express $\frac{dv}{du}$:
$$\frac{dv}{du} = \frac{2u}{v - u}$$
We are given the target form $\frac{dv}{du} = \frac{\alpha u}{2(u - v)}$. To match our result, we manipulate the denominator of our result:
$$\frac{dv}{du} = \frac{2u}{-(u - v)}$$
$$\frac{dv}{du} = \frac{-2u}{u - v}$$
To match the target form, we multiply the numerator and denominator by 2:
$$\frac{dv}{du} = \frac{2 \cdot (-2) u}{2(u - v)} = \frac{-4u}{2(u - v)}$$
Comparing this result to the required form $\frac{dv}{du} = \frac{\alpha u}{2(u - v)}$, we find:
$$\alpha = -4$$
The correct value is $\alpha = -4$.