Step 1: Simplify \( u \).
\[
u = \tan^{-1}\left(\frac{x^2}{x}\right) = \tan^{-1}(x)
\]
Step 2: Differentiate \( u \) with respect to \( x \).
\[
\frac{du}{dx} = \frac{1}{1+x^2}
\Rightarrow
\left.\frac{du}{dx}\right|_{x=0} = 1
\]
Step 3: Differentiate \( v \) with respect to \( x \).
Let
\[
v = \tan^{-1}(f(x)), \quad
f(x) = \frac{2x(1-x^2)}{1-2x^2}
\]
\[
\frac{dv}{dx} = \frac{f'(x)}{1+f(x)^2}
\]
At \( x = 0 \),
\[
f(0)=0, \quad f'(0)=4
\Rightarrow
\left.\frac{dv}{dx}\right|_{x=0} = 4
\]
Step 4: Find \( \dfrac{du}{dv} \).
\[
\frac{du}{dv}
=
\frac{\frac{du}{dx}}{\frac{dv}{dx}}
=
\frac{1}{4}
\]
Step 5: Conclusion.
\[
\left.\frac{du}{dv}\right|_{x=0} = \frac{1}{4}
\]