We are given:
\[
u = \sin\left(\frac{x}{y}\right),\quad x = e^t,\quad y = t^2
\]
So:
\[
u = \sin\left(\frac{e^t}{t^2}\right)
\]
Let \(v = \frac{e^t}{t^2}\), then \(u = \sin(v)\)
\[
\frac{du}{dt} = \cos(v) \cdot \frac{dv}{dt}
\]
Now,
\[
v = \frac{e^t}{t^2} \Rightarrow \frac{dv}{dt} = \frac{e^t t^2 - 2t e^t}{t^4} = \frac{e^t(t^2 - 2t)}{t^4}
\]
So:
\[
\frac{du}{dt} = \cos\left(\frac{e^t}{t^2}\right) \cdot \frac{e^t(t - 2)}{t^3}
\]
Now square and multiply by \(t^6\):
\[
t^6 \left(\frac{du}{dt}\right)^2 = t^6 \cdot \cos^2\left(\frac{e^t}{t^2}\right) \cdot \left(\frac{e^t(t - 2)}{t^3}\right)^2
\]
\[
= \cos^2\left(\frac{e^t}{t^2}\right) \cdot e^{2t}(t - 2)^2
\]
Now divide:
\[
\frac{t^6 \left(\frac{du}{dt}\right)^2}{e^{2t}(t - 2)^2} = \cos^2\left(\frac{e^t}{t^2}\right)
\]
But \(u = \sin\left(\frac{e^t}{t^2}\right)\), so:
\[
\cos^2\left(\frac{e^t}{t^2}\right) = 1 - \sin^2\left(\frac{e^t}{t^2}\right) = 1 - u^2
\]