Proof: Differentiate both sides:
\[
\frac{d}{dx} (uv) = u \frac{dv}{dx} + v \frac{du}{dx}.
\]
Integrate: \( uv = \int u \frac{dv}{dx} dx + \int v \frac{du}{dx} dx \).
\[
uv = \int u \, dv + \int v \, du $\Rightarrow$ \int u \, dv = uv - \int v \, du.
\]
Hence: Let \( u = \log x \), \( dv = dx \).
\[
du = \frac{1}{x} dx, v = x.
\]
\[
\int \log x \, dx = x \log x - \int x \cdot \frac{1}{x} dx = x \log x - \int 1 \, dx = x \log x - x + c.
\]
Answer: Proved; \( x \log x - x + c \).