The correct answer is: (C) 1.
We are given the following expressions for \( u \) and \( v \):
\( u = \sin^{-1}\left(\frac{2x}{1+x^2}\right) \)
\( v = \tan^{-1}\left(\frac{2x}{1-x^2}\right) \)
We need to find \( \frac{du}{dv} \).
Step 1: Differentiate \( u \) with respect to \( x \)
We start by differentiating \( u = \sin^{-1}\left(\frac{2x}{1+x^2}\right) \) using the chain rule. The derivative of \( \sin^{-1}(y) \) with respect to \( y \) is \( \frac{1}{\sqrt{1 - y^2}} \). Therefore:
\[
\frac{du}{dx} = \frac{1}{\sqrt{1 - \left(\frac{2x}{1+x^2}\right)^2}} \cdot \frac{d}{dx} \left( \frac{2x}{1+x^2} \right)
\]
First, simplify \( 1 - \left( \frac{2x}{1+x^2} \right)^2 \):
\[
1 - \frac{4x^2}{(1+x^2)^2} = \frac{(1+x^2)^2 - 4x^2}{(1+x^2)^2} = \frac{1 + 2x^2 + x^4 - 4x^2}{(1+x^2)^2} = \frac{1 - 2x^2 + x^4}{(1+x^2)^2}
\]
This simplifies to \( \frac{(1 - x^2)^2}{(1+x^2)^2} \), so:
\[
\frac{du}{dx} = \frac{(1 + x^2)}{\sqrt{(1 + x^2)^2 - 4x^2}} \cdot \frac{2}{(1 + x^2)^2}
\]
Step 2: Differentiate \( v \) with respect to \( x \)
Now, differentiate \( v = \tan^{-1}\left(\frac{2x}{1-x^2}\right) \):
\[
\frac{dv}{dx} = \frac{1}{1 + \left(\frac{2x}{1-x^2}\right)^2} \cdot \frac{d}{dx} \left( \frac{2x}{1-x^2} \right)
\]
Differentiating the expression inside the parentheses:
\[
\frac{d}{dx} \left( \frac{2x}{1 - x^2} \right) = \frac{(1 - x^2)(2) - 2x(-2x)}{(1 - x^2)^2} = \frac{2 - 2x^2 + 4x^2}{(1 - x^2)^2} = \frac{2 + 2x^2}{(1 - x^2)^2}
\]
Now substitute into the formula:
\[
\frac{dv}{dx} = \frac{1}{1 + \frac{4x^2}{(1 - x^2)^2}} \cdot \frac{2 + 2x^2}{(1 - x^2)^2}
\]
Simplifying the denominator:
\[
\frac{dv}{dx} = \frac{1}{\frac{(1 - x^2)^2 + 4x^2}{(1 - x^2)^2}} \cdot \frac{2 + 2x^2}{(1 - x^2)^2}
\]
Which simplifies further to:
\[
\frac{dv}{dx} = \frac{2 + 2x^2}{(1 - x^2) \left( (1 - x^2)^2 + 4x^2 \right)}
\]
Step 3: Find \( \frac{du}{dv} \)
Now that we have the derivatives \( \frac{du}{dx} \) and \( \frac{dv}{dx} \), the value of \( \frac{du}{dv} \) is:
\[
\frac{du}{dv} = \frac{\frac{du}{dx}}{\frac{dv}{dx}} = 1
\]
Therefore, the correct answer is
(C) 1.