Question:

If two particles A and B of charges \(1.6 \times 10^{-19}\,\text{C}\) and \(3.2 \times 10^{-19}\,\text{C}\) respectively are separated by a distance of 3 cm in air, then the magnitude of electrostatic force on particle A due to particle B is

Show Hint

Always convert distance to meters in SI units and use Coulomb's constant \(9 \times 10^9\,\text{Nm}^2/\text{C}^2\) when calculating electrostatic force.
Updated On: Jun 6, 2025
  • \(5.12 \times 10^{-22}\,\text{N}\)
  • \(5.12 \times 10^{-32}\,\text{N}\)
  • \(5.12 \times 10^{-12}\,\text{N}\)
  • \(5.12 \times 10^{-25}\,\text{N}\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Step 1: Use Coulomb's Law: \[ F = \frac{1}{4\pi \varepsilon_0} . \frac{q_1 q_2}{r^2} \] Step 2: Substitute values: \[ q_1 = 1.6 \times 10^{-19}\,\text{C},
q_2 = 3.2 \times 10^{-19}\,\text{C},
r = 3\,\text{cm} = 0.03\,\text{m},
\frac{1}{4\pi \varepsilon_0} = 9 \times 10^9 \] \[ F = 9 \times 10^9 . \frac{(1.6 \times 10^{-19})(3.2 \times 10^{-19})}{(0.03)^2} \] \[ F = 9 \times 10^9 . \frac{5.12 \times 10^{-38}}{9 \times 10^{-4}} = \frac{46.08 \times 10^{-29}}{9} \approx 5.12 \times 10^{-25}\,\text{N} \]
Was this answer helpful?
0
0