Using the similarity ratio:
\[\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{FD} = \frac{4}{6} = \frac{2}{3}\]
Let the sides of $\triangle ABC$ be $4 \, \text{cm}$, $x$, $y$, corresponding to $\triangle DEF$ sides $6 \, \text{cm}$, $9 \, \text{cm}$, $12 \, \text{cm}$.
Solve:
\[x = \frac{2}{3} \cdot 9 = 6 \, \text{cm}, \quad y = \frac{2}{3} \cdot 12 = 8 \, \text{cm}.\]
Perimeter of $\triangle ABC = 4 + 6 + 8 = 18 \, cm$.
Correct Answer: 18 cm
If \( \triangle ODC \sim \triangle OBA \) and \( \angle BOC = 125^\circ \), then \( \angle DOC = ? \)
Case | Mirror | Focal Length (cm) | Object Distance (cm) |
---|---|---|---|
1 | A | 20 | 45 |
2 | B | 15 | 30 |
3 | C | 30 | 20 |