Step 1: Understanding the Concept:
This problem uses the properties of the dot product of vectors, specifically that the dot product of a vector with itself gives the square of its magnitude. We can use the given condition \( \vec{a} + \vec{b} + \vec{c} = \vec{0} \) to find the required value.
Step 2: Key Formula or Approach:
The key identity is \( \vec{v} \cdot \vec{v} = |\vec{v}|^2 \). We will take the dot product of the vector sum \( (\vec{a} + \vec{b} + \vec{c}) \) with itself.
We start with the given equation:
\[ \vec{a} + \vec{b} + \vec{c} = \vec{0} \]
Taking the dot product of both sides with \( (\vec{a} + \vec{b} + \vec{c}) \):
\[ (\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} + \vec{b} + \vec{c}) = \vec{0} \cdot \vec{0} \]
Step 3: Detailed Explanation or Calculation:
Expanding the left side of the equation:
\[ \vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} + \vec{c} \cdot \vec{b} + \vec{c} \cdot \vec{c} = 0 \]
Using \( \vec{v} \cdot \vec{v} = |\vec{v}|^2 \) and the commutative property of the dot product (\( \vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u} \)):
\[ |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 0 \]
Now, substitute the given magnitudes: \( |\vec{a}| = 3 \), \( |\vec{b}| = 4 \), and \( |\vec{c}| = 2 \).
\[ (3)^2 + (4)^2 + (2)^2 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 0 \]
\[ 9 + 16 + 4 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 0 \]
\[ 29 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 0 \]
Now, solve for the required expression:
\[ 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = -29 \]
\[ \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = -\frac{29}{2} \]
Step 4: Final Answer:
The value of \( \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} \) is \( -\frac{29}{2} \).