If three vectors have equal magnitude i.e. $A = B = C$, then the angle between $\vec{A$ and $\vec{C}$ is $\alpha$. If $\vec{A} + \vec{B} + \vec{C} = 0$, then the angle between $\vec{A}$ and $\vec{C}$ is $\beta$, then $\dfrac{\alpha}{\beta}$ is}
Show Hint
Three equal vectors in equilibrium always subtend angles of $120^\circ$ with each other.
Step 1: Case of three equal vectors.
When three vectors of equal magnitude form a closed triangle, the angle between any two vectors is $120^\circ$.
Hence, $\alpha = 120^\circ$.
Step 2: Given condition $\vec{A + \vec{B} + \vec{C} = 0$.}
This represents equilibrium of three equal vectors.
Therefore, the angle between each pair of vectors is $120^\circ$.
Hence, $\beta = 60^\circ$.