At point \( (1, 0) \), \( t = 0 \Rightarrow x = e^0 \cos 0 = 1, \, y = e^0 \sin 0 = 0 \)
Find derivatives:
\[
\frac{dx}{dt} = e^t(\cos t - \sin t), \quad \frac{dy}{dt} = e^t(\sin t + \cos t)
\]
Then slope of tangent = \( \frac{dy/dt}{dx/dt} \)
Slope of normal = negative reciprocal.
Angle \( \theta = \tan^{-1}(\text{slope of normal}) \Rightarrow \boxed{\frac{3\pi}{4}} \)