Question:

If the vertices and foci of a hyperbola are respectively $(\pm3,0)$ and $(\pm4,0)$ then the parametric equations of that hyperbola are

Show Hint

Use $c^2 = a^2 + b^2$ to compute $b$, then apply standard parametric equations of hyperbola.
Updated On: May 19, 2025
  • $x = 3\sec\theta, y = 7\tan\theta$
  • $x = \sqrt{3}\sec\theta, y = \sqrt{7}\tan\theta$
  • $x = \sqrt{3}\sec\theta, y = 7\tan\theta$
  • $x = 3\sec\theta, y = \sqrt{7}\tan\theta$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Vertices at $x = \pm 3$ ⇒ $a = 3$, foci at $x = \pm 4$ ⇒ $c = 4$
$c^2 = a^2 + b^2 \Rightarrow b^2 = c^2 - a^2 = 16 - 9 = 7$
So parametric form is $x = 3\sec\theta$, $y = \sqrt{7}\tan\theta$
Was this answer helpful?
0
0