>
Exams
>
Mathematics
>
Vectors
>
if the vectors vec a vec b vec c are non coplanar
Question:
If the vectors \( \vec{a}, \vec{b}, \vec{c} \) are non-coplanar, then \( \dfrac{\left| \vec{a} + 2\vec{b} \;\; \vec{b} + 2\vec{c} \;\; \vec{c} + 2\vec{a} \right|} {\left| \vec{a} \;\; \vec{b} \;\; \vec{c} \right|} \) is
Show Hint
In determinant problems, any determinant with two identical columns (or rows) is zero.
MHT CET - 2020
MHT CET
Updated On:
Jan 26, 2026
\( 8 \)
\( 3 \)
\( 9 \)
\( 6 \)
Hide Solution
Verified By Collegedunia
The Correct Option is
C
Solution and Explanation
Step 1: Use determinant properties.
Using linearity of determinants, we expand: \[ \left| \vec{a} + 2\vec{b} \;\; \vec{b} + 2\vec{c} \;\; \vec{c} + 2\vec{a} \right| \]
Step 2: Expand column-wise.
\[ = \left| \vec{a} \;\; \vec{b} \;\; \vec{c} \right| + 2\left| \vec{b} \;\; \vec{b} \;\; \vec{c} \right| + 2\left| \vec{a} \;\; \vec{c} \;\; \vec{c} \right| + 4\left| \vec{b} \;\; \vec{c} \;\; \vec{a} \right| \]
Step 3: Use determinant properties.
Determinants with two identical vectors are zero. Hence, \[ = 9 \left| \vec{a} \;\; \vec{b} \;\; \vec{c} \right| \]
Step 4: Form the ratio.
\[ \frac{9 \left| \vec{a} \;\; \vec{b} \;\; \vec{c} \right|} {\left| \vec{a} \;\; \vec{b} \;\; \vec{c} \right|} = 9 \]
Step 5: Conclusion.
The required value is \( 9 \).
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Vectors
Number of functions \( f: \{1, 2, \dots, 100\} \to \{0, 1\} \), that assign 1 to exactly one of the positive integers less than or equal to 98, is equal to:
JEE Main - 2025
Mathematics
Vectors
View Solution
Let \( \vec{a} \) be a position vector whose tip is the point (2, -3). If \( \overrightarrow{AB} = \vec{a} \), where coordinates of A are (–4, 5), then the coordinates of B are:
CBSE CLASS XII - 2025
Mathematics
Vectors
View Solution
If vector $\vec{a} = 2\hat{i} + m\hat{j} + \hat{k}$ and vector $\vec{b} = \hat{i} - 2\hat{j} + 3\hat{k}$ are perpendicular to each other, then the value of $m$ is
IPU CET - 2025
Mathematics
Vectors
View Solution
For a force F to be conservative, the relations to be satisfied are:
A. \(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} = 0\)
B. \(\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} = 0\)
C. \(\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} = 0\)
D. \(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} = \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} = \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} \neq 0\)
Choose the correct answer from the options given below:
CUET (PG) - 2025
Physics
Vectors
View Solution
If \(|\vec{A}+\vec{B}| = |\vec{A}-\vec{B}|\) then the angle between vectors \(\vec{A}\) and \(\vec{B}\) is:
CUET (PG) - 2025
Physics
Vectors
View Solution
View More Questions
Questions Asked in MHT CET exam
If $ f(x) = 2x^2 - 3x + 5 $, find $ f(3) $.
MHT CET - 2025
Functions
View Solution
Evaluate the definite integral: \( \int_{-2}^{2} |x^2 - x - 2| \, dx \)
MHT CET - 2025
Definite Integral
View Solution
There are 6 boys and 4 girls. Arrange their seating arrangement on a round table such that 2 boys and 1 girl can't sit together.
MHT CET - 2025
permutations and combinations
View Solution
Given the equation: \[ 81 \sin^2 x + 81 \cos^2 x = 30 \] Find the value of \( x \)
.
MHT CET - 2025
Trigonometric Identities
View Solution
Evaluate the integral: \[ \int \frac{1}{\sin^2 2x \cdot \cos^2 2x} \, dx \]
MHT CET - 2025
Trigonometric Identities
View Solution
View More Questions