Step 1: Understanding the Concept:
Two non-zero vectors are perpendicular if and only if their dot product (scalar product) is zero.
Step 2: Key Formula or Approach:
Let \( \vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k} \) and \( \vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k} \).
If \( \vec{a} \perp \vec{b} \), then \( \vec{a} \cdot \vec{b} = 0 \).
The dot product is calculated as: \( a_1b_1 + a_2b_2 + a_3b_3 \).
Step 3: Detailed Explanation or Calculation:
Let \( \vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k} \) and \( \vec{b} = 5\hat{i} - \lambda\hat{j} + 2\hat{k} \).
Since the vectors are perpendicular, their dot product must be zero:
\[ \vec{a} \cdot \vec{b} = 0 \]
\[ (2)(5) + (3)(-\lambda) + (4)(2) = 0 \]
\[ 10 - 3\lambda + 8 = 0 \]
\[ 18 - 3\lambda = 0 \]
\[ 18 = 3\lambda \]
\[ \lambda = \frac{18}{3} = 6 \]
Step 4: Final Answer:
The value of \( \lambda \) is 6.