\( \dfrac{3\left(\dfrac{\sqrt{5}+1}{4}\right) + 5\left(\dfrac{\sqrt{5}-1}{4}\right)}{5\left(\dfrac{\sqrt{5}+1}{4}\right) - 3\left(\dfrac{\sqrt{5}-1}{4}\right)} = \dfrac{8\sqrt{5}-2}{2\sqrt{5}+8} \)
\( = \dfrac{4\sqrt{5}-1}{\sqrt{5}+4} \times \dfrac{\sqrt{5}-4}{\sqrt{5}-4} \)
\( = \dfrac{20 - 16\sqrt{5} - \sqrt{5} + 4}{-11} \)
\( = \dfrac{17\sqrt{5}-24}{11} \Rightarrow a = 17, \, b = 27, \, c = 11 \)
\( a + b + c = 52 \)
If \( \theta \in \left[ -\frac{7\pi}{6}, \frac{4\pi}{3} \right] \), then the number of solutions of \[ \sqrt{3} \csc^2 \theta - 2(\sqrt{3} - 1)\csc \theta - 4 = 0 \] is equal to ______.
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 