Question:

If the value of \[ \frac{3 \cos 36^\circ + 5 \sin 18^\circ}{5 \cos 36^\circ - 3 \sin 18^\circ} = \frac{a\sqrt{5} - b}{c}, \] where \(a, b, c\) are natural numbers and \(\text{gcd}(a, c) = 1\), then \(a + b + c\) is equal to:

Updated On: Mar 20, 2025
  • 50
  • 40
  • 52
  • 54
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

The required area can be expressed as: \[ \text{Required Area} = \text{Area of Circle (from 0 to 2)} - \text{Area under Parabola (from 0 to 2)}. \] \[ \text{Required Area} = \int_0^2 \sqrt{8 - x^2} \, dx - \int_0^2 \sqrt{2x} \, dx \]

We calculate the two integrals separately: 

1. Area under the circle: \[ \int_0^2 \sqrt{8 - x^2} \, dx = \left[ \frac{x}{2} \sqrt{8 - x^2} + \frac{8}{2} \sin^{-1} \frac{x}{\sqrt{8}} \right]_0^2. \] 

Substituting the limits: \[ \int_0^2 \sqrt{8 - x^2} \, dx = \frac{2}{2} \sqrt{8 - 4} + \frac{8}{2} \sin^{-1} \frac{2}{2\sqrt{2}} - \left( 0 + \frac{8}{2} \sin^{-1} 0 \right). \] \[ = 2 + 4 \cdot \frac{\pi}{4} = 2 + \pi. \] 

2. Area under the parabola: \[ \int_0^2 \sqrt{2x} \, dx = \left[ \frac{2}{3} (2x)^{3/2} \right]_0^2. \] 

Substituting the limits: \[ \int_0^2 \sqrt{2x} \, dx = \frac{2}{3} \cdot (2\sqrt{2}) - 0 = \frac{8}{3}. \] 

Thus, the required area is: \[ \text{Required Area} = (2 + \pi) - \frac{8}{3}. \] 

Simplifying: \[ \text{Required Area} = \pi - \frac{2}{3}. \]

Was this answer helpful?
0
0