Question:

If the temperature of the body is increased by $ 10\%, $ the percentage increase in the emitted indication will be

Updated On: May 19, 2022
  • $ 46\% $
  • $ 40\% $
  • $ 30\% $
  • $ 80\% $
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

$Q \propto T^{4} \Rightarrow \frac{Q_{1}}{Q_{2}}=\left(\frac{T_{1}}{T_{2}}\right)^{4}$
If $T_{1}=T$ then $T_{2}=T+\frac{10}{100} T=1.1 \,T$
$\frac{Q_{1}}{Q_{2}}=\left(\frac{T}{1.1 T}\right)^{4} $
$\Rightarrow Q_{2}=1.46 Q_{1}$
$\%$ increase in energy
$=\left(\frac{Q_{2}-Q_{1}}{Q_{1}}\right)$
Was this answer helpful?
0
0

Top Questions on Newtons Law of Cooling

View More Questions

Questions Asked in JEE Advanced exam

View More Questions

Concepts Used:

Newton’s Law of Cooling

Newton’s law of cooling states that the rate of heat loss from a body is directly proportional to the difference in temperature between the body and its surroundings. 

Derivation of Newton’s Law of Cooling

Let a body of mass m, with specific heat capacity s, is at temperature T2 and T1 is the temperature of the surroundings. 

If the temperature falls by a small amount dT2 in time dt, then the amount of heat lost is,

dQ = ms dT2

The rate of loss of heat is given by,

dQ/dt = ms (dT2/dt)                                                                                                                                                                              ……..(2)

Compare the equations (1) and (2) as,

– ms (dT2/dt) = k (T2 – T1)

Rearrange the above equation as:

dT2/(T2–T1) = – (k / ms) dt

dT2 /(T2 – T1) = – Kdt 

where K = k/m s

Integrating the above expression as,

loge (T2 – T1) = – K t + c

or 

T2 = T1 + C’ e–Kt

where C’ = ec