The temperature of the body drops from 60°C to 40°C in 7 min. The surrounding temperature is 10°C. The temperature of the body drops from 40°C to T°C in 7 min. Find the value of T
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
Figure 1 shows the configuration of main scale and Vernier scale before measurement. Fig. 2 shows the configuration corresponding to the measurement of diameter $ D $ of a tube. The measured value of $ D $ is:
Newton’s law of cooling states that the rate of heat loss from a body is directly proportional to the difference in temperature between the body and its surroundings.
Let a body of mass m, with specific heat capacity s, is at temperature T2 and T1 is the temperature of the surroundings.
If the temperature falls by a small amount dT2 in time dt, then the amount of heat lost is,
dQ = ms dT2
The rate of loss of heat is given by,
dQ/dt = ms (dT2/dt) ……..(2)
Compare the equations (1) and (2) as,
– ms (dT2/dt) = k (T2 – T1)
Rearrange the above equation as:
dT2/(T2–T1) = – (k / ms) dt
dT2 /(T2 – T1) = – Kdt
where K = k/m s
Integrating the above expression as,
loge (T2 – T1) = – K t + c
or
T2 = T1 + C’ e–Kt
where C’ = ec