The temperature of the body drops from 60°C to 40°C in 7 min. The surrounding temperature is 10°C. The temperature of the body drops from 40°C to T°C in 7 min. Find the value of T

Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?
Newton’s law of cooling states that the rate of heat loss from a body is directly proportional to the difference in temperature between the body and its surroundings.
Let a body of mass m, with specific heat capacity s, is at temperature T2 and T1 is the temperature of the surroundings.
If the temperature falls by a small amount dT2 in time dt, then the amount of heat lost is,
dQ = ms dT2
The rate of loss of heat is given by,
dQ/dt = ms (dT2/dt) ……..(2)
Compare the equations (1) and (2) as,
– ms (dT2/dt) = k (T2 – T1)
Rearrange the above equation as:
dT2/(T2–T1) = – (k / ms) dt
dT2 /(T2 – T1) = – Kdt
where K = k/m s
Integrating the above expression as,
loge (T2 – T1) = – K t + c
or
T2 = T1 + C’ e–Kt
where C’ = ec