This problem can be solved using Newton's Law of Cooling:
\[
T(t) = T_s + (T_0 - T_s) e^{-kt}
\]
Where:
- \(T(t)\) is the temperature at time \(t\),
- \(T_s = 20^\circ C\) is the surrounding temperature,
- \(T_0 = 80^\circ C\) is the initial temperature of the ball,
- At \(t = 5\) min, \(T(5) = 60^\circ C\)
Using the formula:
\[
60 = 20 + (80 - 20) e^{-5k} \Rightarrow 40 = 60 e^{-5k} \Rightarrow \frac{2}{3} = e^{-5k}
\]
Take log:
\[
\ln \left(\frac{2}{3}\right) = -5k \Rightarrow k = -\frac{1}{5} \ln\left(\frac{2}{3}\right)
\]
Now find \(T(20)\):
\[
T(20) = 20 + 60 e^{-20k} = 20 + 60 \left(e^{-5k}\right)^4 = 20 + 60 \left(\frac{2}{3}\right)^4 = 20 + 60 \cdot \frac{16}{81} = 20 + \frac{960}{81} \approx 20 + 11.85 = 31.85^\circ C
\]
Approximating this, the closest option is:
\[
\boxed{35^\circ C}
\]