\[ D = \begin{vmatrix} 2 & 1 & -1 \\ 1 & -1 & -1 \\ 3 & 3 & \beta \end{vmatrix} = 2(-\beta + 3) - 1(\beta + 3) - 1(3 + 3) \]
\[ D = -2\beta + 6 - \beta - 3 - 6 = -3\beta - 3 \]
For infinitely many solutions, \(D = 0 \implies -3\beta - 3 = 0 \implies \beta = -1\).\[ D_z = \begin{vmatrix} 2 & 1 & 3 \\ 1 & -1 & \alpha \\ 3 & 3 & 3 \end{vmatrix} = 2(-3 - 3\alpha) - 1(3 - 3\alpha) + 3(3 + 3) \]
\[ D_z = -6 - 6\alpha - 3 + 3\alpha + 18 = 9 - 3\alpha \]
For infinitely many solutions, \(D_z = 0 \implies 9 - 3\alpha = 0 \implies \alpha = 3\).


