To solve the problem, we proceed as follows:
Step 1: Find the equation of the straight line passing through \( P(3,4) \)
The line makes an angle \( \frac{\pi}{6} \) with the positive x
-axis. The slope \( m \) of the line is:
\[
m = \tan \frac{\pi}{6} = \frac{1}{\sqrt{3}}.
\]
Using the point
-slope form, the equation of the line is:
\[
y
- 4 = \frac{1}{\sqrt{3}} (x
- 3).
\]
Multiply through by \( \sqrt{3} \):
\[
\sqrt{3} y
- 4\sqrt{3} = x
- 3.
\]
Rearrange:
\[
x
- \sqrt{3} y + 4\sqrt{3}
- 3 = 0.
\]
Step 2: Find the point of intersection \( Q \) with the line \( 12x + 5y + 10 = 0 \)
Solve the system of equations:
1. \( x
- \sqrt{3} y + 4\sqrt{3}
- 3 = 0 \),
2. \( 12x + 5y + 10 = 0 \).
From equation 1, express \( x \) in terms of \( y \):
\[
x = \sqrt{3} y
- 4\sqrt{3} + 3.
\]
Substitute into equation 2:
\[
12 (\sqrt{3} y
- 4\sqrt{3} + 3) + 5y + 10 = 0.
\]
Simplify:
\[
12\sqrt{3} y
- 48\sqrt{3} + 36 + 5y + 10 = 0.
\]
Combine like terms:
\[
(12\sqrt{3} + 5) y
- 48\sqrt{3} + 46 = 0.
\]
Solve for \( y \):
\[
y = \frac{48\sqrt{3}
- 46}{12\sqrt{3} + 5}.
\]
Substitute back into the expression for \( x \):
\[
x = \sqrt{3} \left( \frac{48\sqrt{3}
- 46}{12\sqrt{3} + 5} \right)
- 4\sqrt{3} + 3.
\]
Simplify:
\[
x = \frac{144
- 46\sqrt{3}}{12\sqrt{3} + 5}
- 4\sqrt{3} + 3.
\]
Step 3: Compute the distance \( PQ \)
The distance between \( P(3,4) \) and \( Q(x,y) \) is:
\[
PQ = \sqrt{(x
- 3)^2 + (y
- 4)^2}.
\]
Substitute the expressions for \( x \) and \( y \):
\[
PQ = \sqrt{\left( \frac{144
- 46\sqrt{3}}{12\sqrt{3} + 5}
- 4\sqrt{3} + 3
- 3 \right)^2 + \left( \frac{48\sqrt{3}
- 46}{12\sqrt{3} + 5}
- 4 \right)^2}.
\]
Simplify:
\[
PQ = \sqrt{\left( \frac{144
- 46\sqrt{3}
- 4\sqrt{3}(12\sqrt{3} + 5)}{12\sqrt{3} + 5} \right)^2 + \left( \frac{48\sqrt{3}
- 46
- 4(12\sqrt{3} + 5)}{12\sqrt{3} + 5} \right)^2}.
\]
Further simplification yields:
\[
PQ = \frac{132}{12\sqrt{3} + 5}.
\]
Final Answer:
\[
\boxed{\frac{132}{12\sqrt{3} + 5}}
\]