Question:

If the straight line 3x+4y=k3x + 4y = k touches the circle x2+y2=16xx^2 + y^2 = 16x, then the value of kk is

Updated On: Apr 17, 2024
  • 16,64
  • -16,-64
  • -16,64
  • 16,-64
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Given, x2+y2=16xx^{2} + y^{2} = 16x
x216x+y2=0\Rightarrow x^{2} -16x + y^{2} = 0
x22(x)8+(8)2(8)2+y2=0\Rightarrow x ^{2}- 2\left(x\right) 8 + \left(8\right)^{2} - \left(8\right)^{2} + y^{2} = 0
(x8)2+y2=64...(i)\Rightarrow \left(x-8\right)^{2}+y^{2} =64 \quad...\left(i\right)
\therefore Centre = (8, 0) and radius = 8
Since, the straight line 3x+4y=k3x + 4y = k touches the circle x2+y2=16x^{2} + y^{2} = 16, therefore the length of perpendicular from the centre (8, 0) to the straight line 3x+4yk=03x + 4y - k = 0 is equal to the radius of the circle.
i.e., 8=3(8)+4(0)k9+168 = \left|\frac{3\left(8\right)+4\left(0\right)-k}{\sqrt{9+16}}\right|
8=24k25\Rightarrow 8 = \left|\frac{24-k}{\sqrt{25}}\right|
8=24k5\Rightarrow 8 = \frac{\left|24 - k\right|}{5}
24k=40\Rightarrow \left|24-k\right| = 40
24k=±40\Rightarrow 24-k = \pm 40
Taking positive sign, we get
24k=4024 -k =40
k=4024=16\Rightarrow - k = - 40 - 24 = 16
k=16\Rightarrow k = -16
Taking negative sign, we get
24k=40 24-k=-40
k=4024=64\Rightarrow -k =-40-24=-64
k=64\Rightarrow k =64
k=16,64\therefore k =-16,\,64
Was this answer helpful?
1
0

Top Questions on Conic sections

View More Questions