Let us define:
\[
u = \frac{1}{x}, \quad v = \frac{1}{y}, \quad w = \frac{1}{z}
\]
Rewriting the system:
\begin{align}
u + 2v - 3w = 1 \quad \text{(1)}
2u - 4v + 3w = 1 \quad \text{(2)}
3u + 6v - 6w = 4 \quad \text{(3)}
\]
Now solve the system of equations. Multiply (1) by 2:
\[
2u + 4v - 6w = 2 \quad \text{(4)}
\]
Add (4) and (2):
\[
(2u - 4v + 3w) + (2u + 4v - 6w) = 1 + 2 \Rightarrow 4u - 3w = 3 \quad \text{(5)}
\]
Multiply (1) by 3:
\[
3u + 6v - 9w = 3 \quad \text{(6)}
\]
Subtract (3):
\[
(3u + 6v - 9w) - (3u + 6v - 6w) = 3 - 4 \Rightarrow -3w = -1 \Rightarrow w = \frac{1}{3}
\Rightarrow z = 3
\]
Now use (1):
\[
u + 2v - 1 = 1 \Rightarrow u + 2v = 2 \quad \text{(7)}
\]
Use (2) and known \( w = \frac{1}{3} \Rightarrow 3w = 1 \):
\[
2u - 4v + 1 = 1 \Rightarrow 2u - 4v = 0 \Rightarrow u = 2v \quad \text{(8)}
\]
Substitute (8) in (7):
\[
2v + 2v = 2 \Rightarrow 4v = 2 \Rightarrow v = \frac{1}{2} \Rightarrow y = 2,\quad u = 1 \Rightarrow x = 1
\]
Now, \( \alpha = 1, \beta = 2, \gamma = 3 \Rightarrow \alpha^2 + \gamma^2 = 1^2 + 3^2 = 10 = 5\beta \)