The given terms are:
\(nC_1 x^{n-1} y = 135\) (i)
\(nC_2 x^{n-2} y^2 = 30\) (ii)
\(nC_3 x^{n-3} y^3 = \frac{10}{3}\) (iii)
Step 1: Using (i) and (ii)
\(\frac{nC_1 x}{nC_2 y} = \frac{9}{2}\) (iv)
Step 2: Using (ii) and (iii)
\(\frac{nC_2 x}{nC_3 y} = 9\) (v)
From (iv) and (v), solve for \(nC_2\):
\[ \frac{nC_1 \cdot nC_3}{(nC_2)^2} = \frac{1}{2} \]
Substitute \(nC_1 = n\), \(nC_2 = \frac{n(n-1)}{2}\), \(nC_3 = \frac{n(n-1)(n-2)}{6}\):
\[ \frac{n \cdot \frac{n(n-1)(n-2)}{6}}{\left(\frac{n(n-1)}{2}\right)^2} = \frac{1}{2} \]
\[ \frac{2n^2(n-2)}{6n(n-1)} = \frac{1}{2} \]
\[ 2n(n-2) = 3(n-1) \]
\[ 2n^2 - 7n + 3 = 0 \]
\[ n = 5 \quad \text{(as \(n\) is a positive integer)} \]
Step 3: Solving for \(x\) and \(y\)
From (v):
\[ \frac{x}{y} = 9 \implies x = 9y \]
Substitute in (i):
\[ 5C_1 (9y)^4 y = 135 \]
\[ 5C_1 \cdot 94 y^5 = 135 \]
\[ 5 \cdot 81 \cdot 9 \cdot y^5 = 135 \]
\[ y = \frac{1}{3}, \quad x = 3 \]
Step 4: Calculating the final expression
\[ 6(n^3 + x^2 + y) \]
\[ = 6(5^3 + 3^2 + \frac{1}{3}) \]
\[ = 6(125 + 9 + \frac{1}{3}) \]
\[ = 6(134 + \frac{1}{3}) \]
\[ = 806 \]
We are given that the second, third, and fourth terms in the binomial expansion of \( (x + y)^n \) are \( 135 \), \( 30 \), and \( \frac{10}{3} \), respectively. We need to find the value of the expression \( 6\left(n^3 + x^2 + y\right) \).
The general term (the \( (r+1) \)-th term) in the binomial expansion of \( (x + y)^n \) is given by the formula:
\[ T_{r+1} = \binom{n}{r} x^{n-r} y^r \]where \( \binom{n}{r} = \frac{n!}{r!(n-r)!} \).
To solve for the unknowns \( n, x, y \), we can set up a system of equations for the given terms. A useful technique is to take the ratio of consecutive terms, which simplifies the expressions by canceling common factors.
\[ \frac{T_{r+1}}{T_r} = \frac{\binom{n}{r} x^{n-r} y^r}{\binom{n}{r-1} x^{n-r+1} y^{r-1}} = \frac{n-r+1}{r} \frac{y}{x} \]Step 1: Write the equations for the 2nd, 3rd, and 4th terms.
The second term (\( r=1 \)) is \( T_2 \):
\[ T_2 = \binom{n}{1} x^{n-1} y^1 = n x^{n-1} y = 135 \quad \cdots(1) \]The third term (\( r=2 \)) is \( T_3 \):
\[ T_3 = \binom{n}{2} x^{n-2} y^2 = \frac{n(n-1)}{2} x^{n-2} y^2 = 30 \quad \cdots(2) \]The fourth term (\( r=3 \)) is \( T_4 \):
\[ T_4 = \binom{n}{3} x^{n-3} y^3 = \frac{n(n-1)(n-2)}{6} x^{n-3} y^3 = \frac{10}{3} \quad \cdots(3) \]Step 2: Divide equation (2) by equation (1) to find a relation between \( n, x, y \).
\[ \frac{T_3}{T_2} = \frac{\frac{n(n-1)}{2} x^{n-2} y^2}{n x^{n-1} y} = \frac{30}{135} \] \[ \frac{n-1}{2} \cdot \frac{y}{x} = \frac{2}{9} \implies \frac{y}{x} = \frac{4}{9(n-1)} \quad \cdots(A) \]Step 3: Divide equation (3) by equation (2).
\[ \frac{T_4}{T_3} = \frac{\frac{n(n-1)(n-2)}{6} x^{n-3} y^3}{\frac{n(n-1)}{2} x^{n-2} y^2} = \frac{10/3}{30} \] \[ \frac{n-2}{3} \cdot \frac{y}{x} = \frac{1}{9} \implies \frac{y}{x} = \frac{3}{9(n-2)} = \frac{1}{3(n-2)} \quad \cdots(B) \]Step 4: Equate the expressions for \( \frac{y}{x} \) from equations (A) and (B) to find \( n \).
\[ \frac{4}{9(n-1)} = \frac{1}{3(n-2)} \] \[ 4 \cdot 3(n-2) = 9(n-1) \] \[ 12(n-2) = 9(n-1) \implies 4(n-2) = 3(n-1) \] \[ 4n - 8 = 3n - 3 \implies n = 5 \]Step 5: Substitute \( n=5 \) into equation (B) to find the ratio \( \frac{y}{x} \).
\[ \frac{y}{x} = \frac{1}{3(5-2)} = \frac{1}{3(3)} = \frac{1}{9} \implies y = \frac{x}{9} \]Step 6: Substitute \( n=5 \) and \( y = \frac{x}{9} \) into equation (1) to find \( x \).
\[ n x^{n-1} y = 135 \] \[ 5 \cdot x^{5-1} \cdot \left(\frac{x}{9}\right) = 135 \] \[ \frac{5}{9} x^5 = 135 \] \[ x^5 = \frac{135 \times 9}{5} = 27 \times 9 = 243 \] \[ x^5 = 3^5 \implies x = 3 \]Now, we find \( y \):
\[ y = \frac{x}{9} = \frac{3}{9} = \frac{1}{3} \]Step 7: We have found \( n = 5 \), \( x = 3 \), and \( y = \frac{1}{3} \). Now, we compute the value of the expression \( 6\left(n^3 + x^2 + y\right) \).
\[ n^3 = 5^3 = 125 \] \[ x^2 = 3^2 = 9 \] \[ y = \frac{1}{3} \]Step 8: Substitute these values into the expression.
\[ 6\left(n^3 + x^2 + y\right) = 6\left(125 + 9 + \frac{1}{3}\right) \] \[ = 6\left(134 + \frac{1}{3}\right) \] \[ = 6\left(\frac{134 \times 3 + 1}{3}\right) = 6\left(\frac{402 + 1}{3}\right) = 6\left(\frac{403}{3}\right) \] \[ = 2 \times 403 = 806 \]Therefore, the value of \( 6\left(n^3 + x^2 + y\right) \) is 806.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
