\( 2 \)
The given quadratic equation is \( 2x^2 - 8x + 5 = 0 \). For a quadratic equation \( ax^2 + bx + c = 0 \), the sum and product of the roots are:
Sum of roots: \( p + q = -\frac{b}{a} \)
Product of roots: \( pq = \frac{c}{a} \) Here, \( a = 2 \), \( b = -8 \), \( c = 5 \). Thus: \[ p + q = -\frac{-8}{2} = 4 \] \[ pq = \frac{5}{2} \] To find \( \frac{1}{p} + \frac{1}{q} \), use the identity: \[ \frac{1}{p} + \frac{1}{q} = \frac{p + q}{pq} \] Substitute the values: \[ \frac{1}{p} + \frac{1}{q} = \frac{4}{\frac{5}{2}} = 4 \cdot \frac{2}{5} = \frac{8}{5} \] Thus, the value of \( \frac{1}{p} + \frac{1}{q} \) is: \[ {\frac{8}{5}} \]
Let \( \alpha, \beta \) be the roots of the equation \( x^2 - ax - b = 0 \) with \( \text{Im}(\alpha) < \text{Im}(\beta) \). Let \( P_n = \alpha^n - \beta^n \). If \[ P_3 = -5\sqrt{7}, \quad P_4 = -3\sqrt{7}, \quad P_5 = 11\sqrt{7}, \quad P_6 = 45\sqrt{7}, \] then \( |\alpha^4 + \beta^4| \) is equal to: