Let the roots be \(m-1, m, m+1\).
By Vieta's formulas:
\[
a = (m-1) + m + (m+1) = 3m
\]
\[
b = (m-1)m + m(m+1) + (m+1)(m-1)
\]
Simplifying:
\[
b = (m^2 - m) + (m^2 + m) + (m^2 - 1) = 3m^2 - 1
\]
To minimize \(b\), minimize \(m^2\). The smallest possible \(m^2\) is \(0\) when \(m = 0\), giving:
\[
b = -1
\]
Thus, the smallest possible value is \(\boxed{-1}\).