We are given the cubic equation:
\[
x^3 - 13x^2 + Kx - 27 = 0
\]
Let the roots be in geometric progression (G.P.). Assume the roots are:
\[
a, ar, ar^2
\]
Step 1: Using Vieta's Formulas
From Vieta's formulas:
- Sum of roots:
\[
a + ar + ar^2 = 13
\]
Factoring out \( a \),
\[
a(1 + r + r^2) = 13 \quad \text{(Equation 1)}
\]
- Product of roots:
\[
a \cdot ar \cdot ar^2 = 27
\]
\[
a^3 r^3 = 27
\]
Taking cube roots,
\[
ar = 3 \quad \Rightarrow \quad a = \frac{3}{r}
\]
Step 2: Substituting \( a = \frac{3}{r} \) into the Sum Equation
From Equation 1,
\[
\frac{3}{r} (1 + r + r^2) = 13
\]
Multiplying through by \( r \),
\[
3(1 + r + r^2) = 13r
\]
\[
3 + 3r + 3r^2 = 13r
\]
\[
3r^2 - 10r + 3 = 0
\]
Step 3: Solving the Quadratic Equation
Using the quadratic formula:
\[
r = \frac{-(-10) \pm \sqrt{(-10)^2 - 4(3)(3)}}{2(3)}
\]
\[
r = \frac{10 \pm \sqrt{100 - 36}}{6}
\]
\[
r = \frac{10 \pm \sqrt{64}}{6}
\]
\[
r = \frac{10 \pm 8}{6}
\]
\[
r = \frac{18}{6} = 3 \quad \text{or} \quad r = \frac{2}{6} = \frac{1}{3}
\]
Step 4: Finding \( K \)
From Vieta's relation for the sum of the product of roots taken two at a time:
\[
K = a \cdot ar + ar \cdot ar^2 + ar^2 \cdot a
\]
\[
K = a^2 r + a^2 r^3 + a^2 r^3
\]
From \( a = \frac{3}{r} \), substituting back:
\[
K = a^2 r(1 + r + r^2)
= \left(\frac{3}{r}\right)^2 r (1 + r + r^2)
= \frac{9}{r^2} \cdot r \cdot (1 + r + r^2)
\]
When \( r = 3 \),
\[
K = \frac{9}{9} \cdot 3 \cdot (1 + 3 + 9) = 1 \times 3 \times 13 = 39
\]
Final Answer: (3) \( 39 \)