For roots to be real, the discriminant \( D \ge 0 \).
Let us denote:
\[
A = a^2 + b^2,\quad B = b^2 + c^2,\quad C = b^2 + c^2
\]
So the quadratic becomes:
\[
Ax^2 + 2Bx + C = 0
\]
Discriminant:
\[
\Delta = (2B)^2 - 4AC = 4B^2 - 4AC \ge 0
\]
\[
\Rightarrow B^2 \ge AC = (a^2 + b^2)(b^2 + c^2)
\]
Now substitute \( B = b^2 + c^2 \), then:
\[
(b^2 + c^2)^2 \ge (a^2 + b^2)(b^2 + c^2)
\]
Divide both sides by \( (b^2 + c^2) \neq 0 \):
\[
b^2 + c^2 \ge a^2 + b^2 \Rightarrow c^2 \ge a^2
\]
This only gives Option (A), but the stricter necessary condition from earlier was:
\[
(b^2 + c^2)^2 \ge (a^2 + b^2)(b^2 + c^2) \Rightarrow b^2 + c^2 \ge a^2 + b^2 \Rightarrow c^2 \ge a^2
\]
Now squaring both sides again:
\[
c^4 \ge a^2(b^2 + c^2)
\]
Thus, Option \(\boxed{\text{B}}\) must hold.