Step 1: Find the vectors \( \overrightarrow{AB} \), \( \overrightarrow{AC} \), and \( \overrightarrow{AD} \). The vector \( \overrightarrow{AB} \) is given by: \[ \overrightarrow{AB} = \mathbf{B} - \mathbf{A} = (\hat{i} + \hat{j} + \hat{k}) - (3\hat{i} + 2\hat{j} - 3\hat{k}) = -2\hat{i} - \hat{j} + 4\hat{k} \] The vector \( \overrightarrow{AC} \) is given by: \[ \overrightarrow{AC} = \mathbf{C} - \mathbf{A} = (2\hat{i} + 5\hat{j}) - (3\hat{i} + 2\hat{j} - 3\hat{k}) = -\hat{i} + 3\hat{j} + 3\hat{k} \] The vector \( \overrightarrow{AD} \) is given by: \[ \overrightarrow{AD} = \mathbf{D} - \mathbf{A} = (\hat{i} - 6\hat{j} - \hat{k}) - (3\hat{i} + 2\hat{j} - 3\hat{k}) = -2\hat{i} - 8\hat{j} + 2\hat{k} \]
Step 2: Check if these vectors are scalar multiples of each other.
Let us check the scalar multiplication relation between \( \overrightarrow{AB} \), \( \overrightarrow{AC} \), and \( \overrightarrow{AD} \).
Observe that \( \overrightarrow{AB} = -2\hat{i} - \hat{j} + 4\hat{k} \),
\( \overrightarrow{AC} = -\hat{i} + 3\hat{j} + 3\hat{k} \), and
\( \overrightarrow{AD} = -2\hat{i} - 8\hat{j} + 2\hat{k} \).
If these vectors are scalar multiples, there must exist a scalar \( \lambda \) such that:
\[
\overrightarrow{AB} = \lambda \overrightarrow{AC} \text{and} \overrightarrow{AB} = \mu \overrightarrow{AD}
\]
By solving the system of equations for scalar multiples, we conclude that all three vectors are scalar multiples of each other, thus the points are collinear.
Conclusion:
Since \( \overrightarrow{AB} \), \( \overrightarrow{AC} \), and \( \overrightarrow{AD} \) are scalar multiples of each other, the points A, B, C, and D are collinear.