To find the locus of midpoints, first find the general coordinates of the midpoint in terms of a parameter (like \( \theta \) in this case). Then, eliminate the parameter to get the equation of the locus.
The given equation of the line is:
\( x\cos\theta + y\sin\theta = 7 \)
Step 1: Intercepts of the line
The x-intercept is: \( \frac{7}{\cos\theta} \)
The y-intercept is: \( \frac{7}{\sin\theta} \)
Thus, the intercept points are:
\( A \left( \frac{7}{\cos\theta} , 0 \right) \) and \( B \left( 0, \frac{7}{\sin\theta} \right) \)
Step 2: Coordinates of the midpoint \(M(h,k)\)
The midpoint of \( A \) and \( B \) is given by:
\( h = \frac{7}{2\cos\theta}, \quad k = \frac{7}{2\sin\theta} \)
Step 3: Solving for \( \theta \)
From the given information:
\( k = \frac{7\sqrt{3}}{3} \)
Substitute \( k = \frac{7}{2\sin\theta} \):
\( \frac{7}{2\sin\theta} = \frac{7\sqrt{3}}{3} \Rightarrow \sin\theta = \frac{\sqrt{3}}{2} \)
Thus:
\( \theta = \frac{\pi}{3} \)
Step 4: Solving for \( \alpha \)
Using \( h = \frac{7}{2\cos\theta} \):
\( \alpha = \frac{7}{2\cos\theta} = \frac{7}{2\cos(\frac{\pi}{3})} = \frac{7}{2(\frac{1}{2})} = 7 \)