Step 1: Understanding percentage error propagation
The area of a circle is given by:
\[
A = \pi r^2.
\]
Differentiating both sides:
\[
\frac{dA}{A} = 2 \frac{dr}{r}.
\]
Multiplying by 100 to convert to percentage error:
\[
\% \text{ error in } A = 2 \times (\% \text{ error in } r).
\]
Step 2: Substituting given values
Given \( \% \) error in \( r = 3 \):
\[
\% \text{ error in } A = 2 \times 3 = 6.
\]