Step 1: Understanding endian representation.
For a 2-byte (16-bit) unsigned integer:
• In big endian, the most significant byte (MSB) is stored first.
• In little endian, the least significant byte (LSB) is stored first.
If the same two bytes are interpreted differently due to endianness, the numerical values differ.
Step 2: Express the difference mathematically.
Let the two bytes be \(B_1\) (MSB) and \(B_2\) (LSB). Then:
\[
\text{Big endian value} = 256 \times B_1 + B_2
\]
\[
\text{Little endian value} = 256 \times B_2 + B_1
\]
Given:
\[
(\text{Little endian value}) - (\text{Big endian value}) = 255
\]
Substituting,
\[
(256B_2 + B_1) - (256B_1 + B_2) = 255
\]
\[
255(B_2 - B_1) = 255
\]
\[
B_2 - B_1 = 1
\]
Thus, the LSB must be exactly 1 greater than the MSB.
Step 3: Check each option.
Option (A): 0x6665
Bytes: \(66\) and \(65\) (hex)
Here, \(0x66 - 0x65 = 1\). Hence, this satisfies the condition.
Option (B): 0x0001
Bytes: \(00\) and \(01\)
Difference is \(1\), but when interpreted as little endian, the value does not produce the required difference of exactly 255. Hence, this option is not valid.
Option (C): 0x4243
Bytes: \(42\) and \(43\)
Here, \(0x43 - 0x42 = 1\), but the little-endian value is smaller than the big-endian value, not larger by 255. Hence, incorrect.
Option (D): 0x0100
Bytes: \(01\) and \(00\)
Here, \(0x01 - 0x00 = 1\). This satisfies the condition, giving a difference of exactly 255.
Step 4: Final conclusion.
The unsigned integers that satisfy the given condition on a little endian computer are options (A) and (D).
Consider the following instruction sequence where registers \( R1 \), \( R2 \), and \( R3 \) are general purpose and MEMORY[X] denotes the content at the memory location \( X \):
\[\begin{array}{|l|l|c|} \hline \textbf{Instruction} & \textbf{Semantics} & \textbf{Instruction Size (bytes)} \\ \hline \text{MOV R1, (5000)} & \text{\( R1 \leftarrow \text{MEMORY}[5000] \)} & \text{4} \\ \hline \text{MOV R2, (R3)} & \text{\( R2 \leftarrow \text{MEMORY}[R3] \)} & \text{4} \\ \hline \text{ADD R2, R1} & \text{\( R2 \leftarrow R1 + R2 \)} & \text{2} \\ \hline \text{MOV (R3), R2} & \text{\( \text{MEMORY}[R3] \leftarrow R2 \)} & \text{4} \\ \hline \text{INC R3} & \text{\( R3 \leftarrow R3 + 1 \)} & \text{2} \\ \hline \text{DEC R1} & \text{\( R1 \leftarrow R1 - 1 \)} & \text{2} \\ \hline \text{BNZ 1004} & \text{Branch if not zero to the given absolute address} & \text{2} \\ \hline \text{HALT} & \text{Stop} & \text{1} \\ \hline \end{array}\]Assume that the content of memory location 5000 is 10, and the content of register \( R3 \) is 3000. The content of each of the memory locations from 3000 to 3010 is 50. The instruction sequence starts from memory location 1000. All numbers are in decimal format and the memory is byte addressable.
After the execution of the program, the content of memory location 3010 is \(\underline{\hspace{2cm}}\).
Consider the following process information for Shortest Remaining Time First (SRTF) scheduling:
\[ \begin{array}{|c|c|c|} \hline \textbf{Process} & \textbf{Arrival Time (AT)} & \textbf{Burst Time (BT)} \\ \hline P1 & 0 & 10 \\ P2 & 1 & 13 \\ P3 & 2 & 6 \\ P4 & 8 & 9 \\ \hline \end{array} \]Find the turnaround time for each process.
In the diagram, the lines QR and ST are parallel to each other. The shortest distance between these two lines is half the shortest distance between the point P and the line QR. What is the ratio of the area of the triangle PST to the area of the trapezium SQRT?
Note: The figure shown is representative

A square paper, shown in figure (I), is folded along the dotted lines as shown in figures (II) and (III). Then a few cuts are made as shown in figure (IV). Which one of the following patterns will be obtained when the paper is unfolded?
Consider the relationships among P, Q, R, S, and T:
• P is the brother of Q.
• S is the daughter of Q.
• T is the sister of S.
• R is the mother of Q.
The following statements are made based on the relationships given above.
(1) R is the grandmother of S.
(2) P is the uncle of S and T.
(3) R has only one son.
(4) Q has only one daughter.
Which one of the following options is correct?