Slope of line \(2x - 2y = 3 \Rightarrow y = x - \dfrac{3}{2} \Rightarrow m = 1\)
Normal to curve has slope \(m_n = 1\)
So tangent slope = \(-1\), as normal is perpendicular.
Find derivative:
\[
y = x \log x \Rightarrow \dfrac{dy}{dx} = \log x + 1 = -1 \Rightarrow \log x = -2 \Rightarrow x = \dfrac{1}{e^2}
\Rightarrow y = \dfrac{1}{e^2} \log \left( \dfrac{1}{e^2} \right) = \dfrac{1}{e^2} (-2) = -\dfrac{2}{e^2}
\Rightarrow P = \left( \dfrac{1}{e}, -\dfrac{2}{e^2} \right)
\]