If the median of the following frequency table is 28.5, find the values of $x$ and $y$ where the sum of frequencies is 80. 
Step 1: Given that total frequency = 80.
\[ 5 + x + 20 + 15 + y + 5 = 80 \Rightarrow x + y = 35 \quad \text{...(1)} \] Step 2: Median formula.
\[ \text{Median} = l + \left(\frac{\frac{N}{2} - c.f.}{f}\right) \times h \] Step 3: Find median class.
Median = 28.5, $\Rightarrow$ lies in 20–30 class. So, \[ l = 20, \; h = 10, \; f = 20, \; N = 80, \; \frac{N}{2} = 40 \] Cumulative frequency before median class: $5 + x = (5 + x)$.
Step 4: Substitute values.
\[ 28.5 = 20 + \left(\frac{40 - (5 + x)}{20}\right) \times 10 \]
Step 5: Simplify.
\[ 28.5 - 20 = \frac{(35 - x)}{2} \] \[ 8.5 = \frac{35 - x}{2} \Rightarrow 17 = 35 - x \Rightarrow x = 18 \]
Step 6: Find $y$.
From (1): $x + y = 35 \Rightarrow 18 + y = 35 \Rightarrow y = 17$.
Step 7: Conclusion.
\[ \boxed{x = 18, \; y = 17} \]
The coefficient of correlation of the above two data series will be equal to \(\underline{\hspace{1cm}}\)
\[\begin{array}{|c|c|} \hline X & Y \\ \hline -3 & 9 \\ -2 & 4 \\ -1 & 1 \\ 0 & 0 \\ 1 & 1 \\ 2 & 4 \\ 3 & 9 \\ \hline \end{array}\]
Identify the median class for the following grouped data:
\[\begin{array}{|c|c|} \hline \textbf{Class interval} & \textbf{Frequency} \\ \hline 5-10 & 5 \\ 10-15 & 15 \\ 15-20 & 22 \\ 20-25 & 25 \\ 25-30 & 10 \\ 30-35 & 3 \\ \hline \end{array}\]
Find the unknown frequency if 24 is the median of the following frequency distribution:
\[\begin{array}{|c|c|c|c|c|c|} \hline \text{Class-interval} & 0-10 & 10-20 & 20-30 & 30-40 & 40-50 \\ \hline \text{Frequency} & 5 & 25 & 25 & \text{$p$} & 7 \\ \hline \end{array}\]