\[ \begin{vmatrix} -\lambda & 2 \\ K & -1-\lambda \end{vmatrix} = 0 \implies \lambda(1+\lambda) - 2K = 0 \implies \lambda^2 + \lambda - 2K = 0 \]
So, \( A^2 + A - 2KI = 0 \implies A^2 = 2KI - A \).\[ A^4 = 4K^2 I + (2KI - A) - 4KA = (4K^2 + 2K)I - A(1 + 4K) \]
Substitute \( A^4 \) into \( A^4 + 3A = 2I \):\[ (4K^2 + 2K)I - A(1 + 4K) + 3A = 2I \]
\[ (4K^2 + 2K - 2)I + A(2 - 4K) = 0 \]
This must be true for all \( A \), so coefficients must be zero.The value of the determinant where \( \omega \) is cube root of unity is \[ \begin{vmatrix} \omega^2 & \omega & \omega^2 \\ \omega^2 & \omega & \omega^2 \\ \omega^2 & \omega & \omega^2 \end{vmatrix} \]



