(A)Let the parametric equations of the first line be:
\[
x = 1 + \lambda, \quad y = 2 + 2\lambda, \quad z = -3 + \lambda.
\]
For the second line:
\[
x = a + 2\mu, \quad y = -2 + 3\mu, \quad z = -3 + \mu.
\]
(B)For intersection, equate coordinates:
\[
1 + \lambda = a + 2\mu, \quad 2 + 2\lambda = -2 + 3\mu, \quad -3 + \lambda = -3 + \mu.
\]
(C)From the third equation:
\[
\lambda = \mu.
\]
(D)Substitute \( \lambda = \mu \) into the first two equations:
\[
1 + \lambda = a + 2\lambda \implies a = 1 - \lambda.
\]
\[
2 + 2\lambda = -2 + 3\lambda \implies \lambda = 4.
\]
(E)Substituting \( \lambda = 4 \) into the first line's equations gives \( P(5, 10, 1) \).
(F) Distance from \( P \) to the plane \( z = a \):
\[
\text{Distance} = |z - a| = |1 - (-3)| = 28.
\]