Step 1: Substitute to find intersection points.
From \( 2x + 3y = k \), \( y = \frac{k - 2x}{3} \). Substitute into the conic:
\[
3x^2 - x \left( \frac{k - 2x}{3} \right) + 3 \left( \frac{k - 2x}{3} \right)^2 + 2x - 3 \left( \frac{k - 2x}{3} \right) - 4 = 0.
\]
Multiply by 9, simplify: \( 15x^2 + (12 - 5k)x + (k^2 - 3k - 12) = 0 \).
\[
x_1 + x_2 = \frac{5k - 12}{15}, \quad x_1 x_2 = \frac{k^2 - 3k - 12}{15}.
\]
Step 2: Apply the right-angle condition.
Slopes: \( \frac{k - 2x_i}{3x_i} \). Product = -1:
\[
(k - 2x_1)(k - 2x_2) = -9 x_1 x_2 \quad \Rightarrow \quad 6k^2 - 5k - 52 = 0.
\]