If the line x cos α + y sin α = 2√3 is tangent to the ellipse \(\frac{x^2}{16} + \frac{y^2}{8} = 1\) and α is an acute angle then α =
\(\frac{π}{6}\)
\(\frac{π}{4}\)
\(\frac{π}{3}\)
\(\frac{π}{2}\)
To find the acute angle \(\alpha\) for which the line \(x \cos \alpha + y \sin \alpha = 2\sqrt{3}\) is tangent to the ellipse \(\frac{x^2}{16} + \frac{y^2}{8} = 1\), we proceed as follows:
1. Identifying Parameters of the Ellipse:
The ellipse is given by \(\frac{x^2}{16} + \frac{y^2}{8} = 1\), which is in the form \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\).
\( a^2 = 16 \implies a = 4 \)
\( b^2 = 8 \implies b = 2\sqrt{2} \)
2. Line Equation:
The line is given by:
\( x \cos \alpha + y \sin \alpha = 2\sqrt{3} \)
Rewrite in standard form:
\( x \cos \alpha + y \sin \alpha - 2\sqrt{3} = 0 \)
3. Tangency Condition for the Ellipse:
For a line \( x \cos \alpha + y \sin \alpha = p \) to be tangent to the ellipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\),
\( a^2 \cos^2 \alpha + b^2 \sin^2 \alpha = p^2 \)
Here, \( a^2 = 16 \), \( b^2 = 8 \), and \( p = 2\sqrt{3} \), so \( p^2 = (2\sqrt{3})^2 = 12 \).
\( 16 \cos^2 \alpha + 8 \sin^2 \alpha = 12 \)
4. Simplifying the Equation:
Use \(\sin^2 \alpha = 1 - \cos^2 \alpha\):
\( 16 \cos^2 \alpha + 8 (1 - \cos^2 \alpha) = 12 \)
\( 16 \cos^2 \alpha + 8 - 8 \cos^2 \alpha = 12 \)
\( 8 \cos^2 \alpha + 8 = 12 \)
\( 8 \cos^2 \alpha = 4 \)
\( \cos^2 \alpha = \frac{4}{8} = \frac{1}{2} \)
5. Solving for \(\alpha\):
\( \cos \alpha = \pm \sqrt{\frac{1}{2}} = \pm \frac{\sqrt{2}}{2} \)
Since \(\alpha\) is an acute angle (\(0 < \alpha < \frac{\pi}{2}\)), take the positive root:
\( \cos \alpha = \frac{\sqrt{2}}{2} \implies \alpha = \frac{\pi}{4} \)
Final Answer:
The acute angle \(\alpha\) is \(\frac{\pi}{4}\).
What is the angle between the hour and minute hands at 4:30?
Match the following: