We are tasked with analyzing the intersection and verification of lines. The given lines are:
\( \ell_1 : 3y - 2x = 3, \quad \ell_2 : x - y + 1 = 0. \)
The point of intersection of \( \ell_1 \) and \( \ell_2 \) is:
\( P \equiv (0, 1). \)
The point \( P(0, 1) \) lies on the line:
\( \ell_3 : \alpha x - \beta y + 17 = 0. \)
Substitute \( P(0, 1) \) into \( \ell_3 \):
\( \alpha(0) - \beta(1) + 17 = 0 \implies \beta = -17. \)
Consider a random point \( Q \equiv (-1, 0) \) on \( \ell_2 : x - y + 1 = 0 \). The image of \( Q(-1, 0) \) about \( \ell_2 \) is:
\( Q' \equiv \left( -\frac{17}{13}, \frac{6}{13} \right). \)
This is calculated using the formula for the reflection of a point about a line.
Substitute \( Q' \left( -\frac{17}{13}, \frac{6}{13} \right) \) into \( \ell_3 \):
Substitute \( \beta = -17 \):
\( \ell_3 : \alpha x - \beta y + 17 = 0. \)
\( \alpha \left( -\frac{17}{13} \right) - (-17) \left( \frac{6}{13} \right) + 17 = 0. \)
Simplify:
\( -\frac{17\alpha}{13} + \frac{102}{13} + 17 = 0. \)
Equating coefficients, solve for \( \alpha \):
\( \alpha = 7. \)
Now substitute \( \alpha = 7 \) and \( \beta = -17 \) into the condition:
\( \alpha^2 + \beta^2 - \alpha - \beta = 348. \)
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: