Step 1: Apply Lagrange’s Mean Value Theorem.
According to L.M.V.T., there exists \(c \in (1,3)\) such that
\[
f'(c) = \frac{f(3) - f(1)}{3 - 1}
\]
Step 2: Compute \(f(3)\) and \(f(1)\).
\[
f(3) = 3 + \frac{1}{3} = \frac{10}{3}, \quad
f(1) = 1 + 1 = 2
\]
Step 3: Evaluate the right-hand side.
\[
\frac{\frac{10}{3} - 2}{2} = \frac{4/3}{2} = \frac{2}{3}
\]
Step 4: Find the derivative and solve.
\[
f'(x) = 1 - \frac{1}{x^2}
\]
\[
1 - \frac{1}{c^2} = \frac{2}{3}
\Rightarrow \frac{1}{c^2} = \frac{1}{3}
\Rightarrow c = \sqrt{3}
\]