Let the equation of the circle be \(S: x^2 + y^2 - 4x + 4y + 4 = 0\).
The center of the circle is \(C(2, -2)\).
The radius of the circle is \(r = \sqrt{(-2)^2 + 2^2 - 4} = \sqrt{4 + 4 - 4} = \sqrt{4} = 2\).
Let \(P(3, 3)\) and \(Q(a, b)\) be inverse points with respect to the circle.
Then \(C, P, Q\) are collinear and \(CP \cdot CQ = r^2\).
The slope of \(CP\) is \(\frac{3 - (-2)}{3 - 2} = \frac{5}{1} = 5\).
The equation of the line \(CP\) is \(y + 2 = 5(x - 2)\), i.e., \(y = 5x - 12\).
Since \(Q(a, b)\) lies on this line, \(b = 5a - 12\).
Now, \(CP = \sqrt{(3-2)^2 + (3-(-2))^2} = \sqrt{1^2 + 5^2} = \sqrt{26}\).
\(CQ = \sqrt{(a-2)^2 + (b+2)^2}\).
We have \(CP \cdot CQ = r^2\), so \(\sqrt{26} \cdot \sqrt{(a-2)^2 + (b+2)^2} = 2^2 = 4\).
\((a-2)^2 + (b+2)^2 = \frac{16}{26} = \frac{8}{13}\).
Substituting \(b = 5a - 12\):
\((a-2)^2 + (5a - 12 + 2)^2 = \frac{8}{13}\)
\((a-2)^2 + (5a - 10)^2 = \frac{8}{13}\)
\(a^2 - 4a + 4 + 25a^2 - 100a + 100 = \frac{8}{13}\)
\(26a^2 - 104a + 104 = \frac{8}{13}\)
\(13(26a^2 - 104a + 104) = 8\)
\(338a^2 - 1352a + 1352 = 8\)
\(338a^2 - 1352a + 1344 = 0\)
\(169a^2 - 676a + 672 = 0\)
Since \(CP \cdot CQ = r^2\), we have \(\sqrt{26} \cdot \sqrt{(a-2)^2 + (b+2)^2} = 4\).
Also, \(CP = \sqrt{26}\).
We have \(CQ = \frac{4}{\sqrt{26}}\).
Let \(\vec{CP} = \begin{pmatrix} 1
5 \end{pmatrix}\).
Then \(\vec{CQ} = \frac{CQ}{CP} \vec{CP} = \frac{4/\sqrt{26}}{\sqrt{26}} \begin{pmatrix} 1
5 \end{pmatrix} = \frac{4}{26} \begin{pmatrix} 1
5 \end{pmatrix} = \frac{2}{13} \begin{pmatrix} 1
5 \end{pmatrix}\).
So, \(\vec{CQ} = \begin{pmatrix} a-2
b+2 \end{pmatrix} = \begin{pmatrix} 2/13
10/13 \end{pmatrix}\).
\(a - 2 = \frac{2}{13} \implies a = 2 + \frac{2}{13} = \frac{28}{13}\).
\(b + 2 = \frac{10}{13} \implies b = \frac{10}{13} - 2 = \frac{10 - 26}{13} = -\frac{16}{13}\).
Then \(a + 5b = \frac{28}{13} + 5\left(-\frac{16}{13}\right) = \frac{28 - 80}{13} = \frac{-52}{13} = -4\).
Final Answer: The final answer is $\boxed{(3)}$