Question:

If the inverse point of the point \(P(3,3)\) with respect to the circle \(x^2 + y^2 - 4x + 4y + 4 = 0\) is \(Q(a,b)\), then \(a + 5b =\)

Show Hint

Inversions with respect to degenerate circles (points) typically reflect the original point through the center if the radius is not zero, so check calculations for errors if results seem unexpected.
Updated On: Mar 11, 2025
  • 4
  • 0
  • -4
  • 1
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Let the equation of the circle be \(S: x^2 + y^2 - 4x + 4y + 4 = 0\).
The center of the circle is \(C(2, -2)\).
The radius of the circle is \(r = \sqrt{(-2)^2 + 2^2 - 4} = \sqrt{4 + 4 - 4} = \sqrt{4} = 2\).
Let \(P(3, 3)\) and \(Q(a, b)\) be inverse points with respect to the circle.
Then \(C, P, Q\) are collinear and \(CP \cdot CQ = r^2\).
The slope of \(CP\) is \(\frac{3 - (-2)}{3 - 2} = \frac{5}{1} = 5\).
The equation of the line \(CP\) is \(y + 2 = 5(x - 2)\), i.e., \(y = 5x - 12\).
Since \(Q(a, b)\) lies on this line, \(b = 5a - 12\).
Now, \(CP = \sqrt{(3-2)^2 + (3-(-2))^2} = \sqrt{1^2 + 5^2} = \sqrt{26}\).
\(CQ = \sqrt{(a-2)^2 + (b+2)^2}\).
We have \(CP \cdot CQ = r^2\), so \(\sqrt{26} \cdot \sqrt{(a-2)^2 + (b+2)^2} = 2^2 = 4\).
\((a-2)^2 + (b+2)^2 = \frac{16}{26} = \frac{8}{13}\). Substituting \(b = 5a - 12\):
\((a-2)^2 + (5a - 12 + 2)^2 = \frac{8}{13}\)
\((a-2)^2 + (5a - 10)^2 = \frac{8}{13}\)
\(a^2 - 4a + 4 + 25a^2 - 100a + 100 = \frac{8}{13}\)
\(26a^2 - 104a + 104 = \frac{8}{13}\)
\(13(26a^2 - 104a + 104) = 8\)
\(338a^2 - 1352a + 1352 = 8\)
\(338a^2 - 1352a + 1344 = 0\)
\(169a^2 - 676a + 672 = 0\)
Since \(CP \cdot CQ = r^2\), we have \(\sqrt{26} \cdot \sqrt{(a-2)^2 + (b+2)^2} = 4\).
Also, \(CP = \sqrt{26}\).
We have \(CQ = \frac{4}{\sqrt{26}}\).
Let \(\vec{CP} = \begin{pmatrix} 1
5 \end{pmatrix}\). Then \(\vec{CQ} = \frac{CQ}{CP} \vec{CP} = \frac{4/\sqrt{26}}{\sqrt{26}} \begin{pmatrix} 1
5 \end{pmatrix} = \frac{4}{26} \begin{pmatrix} 1
5 \end{pmatrix} = \frac{2}{13} \begin{pmatrix} 1
5 \end{pmatrix}\).
So, \(\vec{CQ} = \begin{pmatrix} a-2
b+2 \end{pmatrix} = \begin{pmatrix} 2/13
10/13 \end{pmatrix}\).
\(a - 2 = \frac{2}{13} \implies a = 2 + \frac{2}{13} = \frac{28}{13}\).
\(b + 2 = \frac{10}{13} \implies b = \frac{10}{13} - 2 = \frac{10 - 26}{13} = -\frac{16}{13}\).
Then \(a + 5b = \frac{28}{13} + 5\left(-\frac{16}{13}\right) = \frac{28 - 80}{13} = \frac{-52}{13} = -4\). Final Answer: The final answer is $\boxed{(3)}$
Was this answer helpful?
0
0