Question:

If the function
\(f(x) =   \begin{cases}    \frac {log_e(1−x+x^2)+log_e(1+x+x_2)}{sec⁡\ x−cos⁡\ x},      & \quad x∈(−\frac \pi2,\frac \pi2)−{0}\\     k,  & \quad x=0   \end{cases}\)
is continuous at \(x = 0\), then k is equal to

Updated On: Sep 18, 2024
  • 1
  • -1
  • e
  • 0
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

\(f(x) =   \begin{cases}    \frac {log_e(1−x+x^2)+log_e(1+x+x_2)}{sec⁡\ x−cos⁡\ x},      & \quad x∈(−\frac \pi2,\frac \pi2)−{0}\\     k,  & \quad x=0   \end{cases}\)
for continuity at \(x = 0\)
\(\lim\limits_{x→0}f(x)=k\)

∴ \(k=\lim\limits_{x→0}\) \(\frac {log_e(1−x+x^2)+log_e(1+x+x_2)}{sec⁡\ x−cos⁡\ x}\)   (\(\frac 00\) form)

=\(\lim\limits_{x→0}\) \(\frac {cos\ ⁡x log_e(x^4+x^2+1)}{sin^2⁡x}\)

=\(\lim\limits_{x→0}\) \(log_e \frac {(x_4+x_2+1)}{x_2}\)

=\(\lim\limits_{x→0}\) \(\frac {ln(1+x^2+x^4)}{x^2+x4} ⋅ \frac {x^2+x^4}{x^2}\)
=\(1\)

So, the correct option is (A): \(1\)

Was this answer helpful?
1
6

Questions Asked in JEE Main exam

View More Questions

Concepts Used:

Continuity

A function is said to be continuous at a point x = a,  if

limx→a

f(x) Exists, and

limx→a

f(x) = f(a)

It implies that if the left hand limit (L.H.L), right hand limit (R.H.L) and the value of the function at x=a exists and these parameters are equal to each other, then the function f is said to be continuous at x=a.

If the function is undefined or does not exist, then we say that the function is discontinuous.

Conditions for continuity of a function: For any function to be continuous, it must meet the following conditions:

  • The function f(x) specified at x = a, is continuous only if f(a) belongs to real number.
  • The limit of the function as x approaches a, exists.
  • The limit of the function as x approaches a, must be equal to the function value at x = a.